Einige Stabilitätsungleichungen für gewöhnliche Differenzengleichungen in nichtkompakter Form.
Galerkin reduced-order models for the semi-discrete wave equation, that preserve the second-order structure, are studied. Error bounds for the full state variables are derived in the continuous setting (when the whole trajectory is known) and in the discrete setting when the Newmark average-acceleration scheme is used on the second-order semi-discrete equation. When the approximating subspace is constructed using the proper orthogonal decomposition, the error estimates are proportional to the sums...
In der vorliegenden Arbeit wird der -Stabilitätsbegriff von Dahlquist, der die Grundlage für Stabilitätsuntersuchungen bei linearen Mehrschrittverfahren zur Lösung nichtlinearet Anfangswertaufgaben bildet, auf die Klasse der linearen Mehrschrittblockverfahren übertragen. Es wird nachgewiesen, das Blockverfahren, die in diesem Sinne stabil sind, höchstens die Konsistenzordnung 2 haben können.
We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form , . In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.
We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form |x|α, α ∈ [1/2,1). In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.
In this note we propose an exact simulation algorithm for the solution of (1)d X t = d W t + b̅ ( X t ) d t, X 0 = x, where b̅is a smooth real function except at point 0 where b̅(0 + ) ≠ b̅(0 −) . The main idea is to sample an exact skeleton of Xusing an algorithm deduced from the convergence of the solutions of the skew perturbed equation (2)d X t β = d W t + b̅ ( X t β ) d t + β d L t 0 ( X β ) , X 0 = x towardsX solution of (1) as β ≠ 0 tends to 0. In this note, we show that this convergence...
In der vorliegenden Arbeit wird für lineare Mehrschrittblock verfahren zur numerischen Lösung von Anfangswertaufgaben eine explizite Konstruktionsmöglichkeit angegeben. Sie ermöglicht es, zu einem gegebenen Stabilitätspolynom ohne Lösung eines linearen Gleichungssystems die Koefizienten des zugehörigen Blockverfahrens zu berechnen.