Page 1

Displaying 1 – 17 of 17

Showing per page

Unconditional stability of difference formulas

Tomáš Roubíček (1983)

Aplikace matematiky

The paper concerns the solution of partial differential equations of evolution type by the finite difference method. The author discusses the general assumptions on the original equation as well as its discretization, which guarantee that the difference scheme is unconditionally stable, i.e. stable without any stability condition for the time-step. A new notion of the A n -acceptability of the integration formula is introduced and examples of such formulas are given. The results can be applied to ordinary...

Uniformly enclosing discretization methods and grid generation for semilinear boundary value problems with first order terms

Hans-Görg Roos (1989)

Aplikace matematiky

The paper deals with uniformly enclosing discretization methods of the first order for semilinear boundary value problems. Some fundamental properties of this discretization technique (the enclosing property, convergence, the inverse-monotonicity) are proved. A feedback grid generation principle using information from the lower and upper solutions is presented.

Currently displaying 1 – 17 of 17

Page 1