Page 1

Displaying 1 – 7 of 7

Showing per page

Validation of numerical simulations of a simple immersed boundary solver for fluid flow in branching channels

Keslerová, Radka, Lancmanová, Anna, Bodnár, Tomáš (2023)

Programs and Algorithms of Numerical Mathematics

This work deals with the flow of incompressible viscous fluids in a two-dimensional branching channel. Using the immersed boundary method, a new finite difference solver was developed to interpret the channel geometry. The numerical results obtained by this new solver are compared with the numerical simulations of the older finite volume method code and with the results obtained with OpenFOAM. The aim of this work is to verify whether the immersed boundary method is suitable for fluid flow in channels...

Verification of functional a posteriori error estimates for obstacle problem in 1D

Petr Harasim, Jan Valdman (2013)

Kybernetika

We verify functional a posteriori error estimate for obstacle problem proposed by Repin. Simplification into 1D allows for the construction of a nonlinear benchmark for which an exact solution of the obstacle problem can be derived. Quality of a numerical approximation obtained by the finite element method is compared with the exact solution and the error of approximation is bounded from above by a majorant error estimate. The sharpness of the majorant error estimate is discussed.

Verification of functional a posteriori error estimates for obstacle problem in 2D

Petr Harasim, Jan Valdman (2014)

Kybernetika

We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value...

Visualisation of the electromagnetic vector fields

Bartoň, Stanislav (2023)

Programs and Algorithms of Numerical Mathematics

Modern computer algebra software can be used to visualize vector fields. One of the most used is the Maple program. This program is used to visualize two and three-dimensional vector fields. The possibilities of plotting direction vectors, lines of force, equipotential curves and the method of colouring the surface area for two-dimensional cases are shown step by step. For three-dimensional arrays, these methods are applied to various slices of three-dimensional space, such as a plane or a cylindrical...

Currently displaying 1 – 7 of 7

Page 1