Displaying 401 – 420 of 596

Showing per page

On finite element approximation of fluid structure interaction by Taylor-Hood and Scott-Vogelius elements

Vacek, Karel, Sváček, Petr (2023)

Programs and Algorithms of Numerical Mathematics

This paper focuses on mathematical modeling and finite element simulation of fluid-structure interaction problems. A simplified problem of two-dimensional incompressible fluid flow interacting with a rigid structure, whose motion is described with one degree of freedom, is considered. The problem is mathematically described and numerically approximated using the finite element method. Two possibilities, namely Taylor-Hood and Scott-Vogelius elements are presented and implemented. Finally, numerical...

On interpolation error on degenerating prismatic elements

Ali Khademi, Sergey Korotov, Jon Eivind Vatne (2018)

Applications of Mathematics

We propose an analogue of the maximum angle condition (commonly used in finite element analysis for triangular and tetrahedral meshes) for the case of prismatic elements. Under this condition, prisms in the meshes may degenerate in certain ways, violating the so-called inscribed ball condition presented by P. G. Ciarlet (1978), but the interpolation error remains of the order O ( h ) in the H 1 -norm for sufficiently smooth functions.

On mesh independence and Newton-type methods

Owe Axelsson (1993)

Applications of Mathematics

Mesh-independent convergence of Newton-type methods for the solution of nonlinear partial differential equations is discussed. First, under certain local smoothness assumptions, it is shown that by properly relating the mesh parameters H and h for a coarse and a fine discretization mesh, it suffices to compute the solution of the nonlinear equation on the coarse mesh and subsequently correct it once using the linearized (Newton) equation on the fine mesh. In this way the iteration error will be...

On multi-parameter error expansions in finite difference methods for linear Dirichlet problems

Ta Van Dinh (1987)

Aplikace matematiky

The paper is concerned with the finite difference approximation of the Dirichlet problem for a second order elliptic partial differential equation in an n -dimensional domain. Considering the simplest finite difference scheme and assuming a sufficient smoothness of the domain, coefficients of the equation, right-hand part, and boundary condition, the author develops a general error expansion formula in which the mesh sizes of an ( n -dimensional) rectangular grid in the directions of the individual...

On polynomial robustness of flux reconstructions

Miloslav Vlasák (2020)

Applications of Mathematics

We deal with the numerical solution of elliptic not necessarily self-adjoint problems. We derive a posteriori upper bound based on the flux reconstruction that can be directly and cheaply evaluated from the original fluxes and we show for one-dimensional problems that local efficiency of the resulting a posteriori error estimators depends on p 1 / 2 only, where p is the discretization polynomial degree. The theoretical results are verified by numerical experiments.

On Synge-type angle condition for d -simplices

Antti Hannukainen, Sergey Korotov, Michal Křížek (2017)

Applications of Mathematics

The maximum angle condition of J. L. Synge was originally introduced in interpolation theory and further used in finite element analysis and applications for triangular and later also for tetrahedral finite element meshes. In this paper we present some of its generalizations to higher-dimensional simplicial elements. In particular, we prove optimal interpolation properties of linear simplicial elements in d that degenerate in some way.

On the approximation of stability factors for general parametrized partial differential equations with a two-level affine decomposition

Toni Lassila, Andrea Manzoni, Gianluigi Rozza (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A new approach for computationally efficient estimation of stability factors for parametric partial differential equations is presented. The general parametric bilinear form of the problem is approximated by two affinely parametrized bilinear forms at different levels of accuracy (after an empirical interpolation procedure). The successive constraint method is applied on the coarse level to obtain a lower bound for the stability factors, and this bound is extended to the fine level by adding a proper...

On the approximation of stability factors for general parametrized partial differential equations with a two-level affine decomposition

Toni Lassila, Andrea Manzoni, Gianluigi Rozza (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

A new approach for computationally efficient estimation of stability factors for parametric partial differential equations is presented. The general parametric bilinear form of the problem is approximated by two affinely parametrized bilinear forms at different levels of accuracy (after an empirical interpolation procedure). The successive constraint method is applied on the coarse level to obtain a lower bound for the stability factors, and this...

On the approximation of stability factors for general parametrized partial differential equations with a two-level affine decomposition

Toni Lassila, Andrea Manzoni, Gianluigi Rozza (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

A new approach for computationally efficient estimation of stability factors for parametric partial differential equations is presented. The general parametric bilinear form of the problem is approximated by two affinely parametrized bilinear forms at different levels of accuracy (after an empirical interpolation procedure). The successive constraint method is applied on the coarse level to obtain a lower bound for the stability factors, and this...

Currently displaying 401 – 420 of 596