Computation of radial solutions of semilinear equations.
Newton-like methods are considered with inexact correction computed by some inner iterative method. Composite iterative methods of this type are applied to the solution of nonlinear systems arising from the solution of nonlinear elliptic boundary value problems. Two main quastions are studied in this paper: the convergence of the inexact Newton-like methods and the efficient control of accuracy in computation of the inexact correction. Numerical experiments show the efficiency of the suggested composite...
We consider a nonlinear second order elliptic boundary value problem (BVP) in a bounded domain with a nonlocal boundary condition. A Dirichlet BC containing an unknown additive constant, accompanied with a nonlocal (integral) Neumann side condition is prescribed at some boundary part . The rest of the boundary is equipped with Dirichlet or nonlinear Robin type BC. The solution is found via linearization. We design a robust and efficient approximation scheme. Error estimates for the linearization...
We consider a nonlinear second order elliptic boundary value problem (BVP) in a bounded domain with a nonlocal boundary condition. A Dirichlet BC containing an unknown additive constant, accompanied with a nonlocal (integral) Neumann side condition is prescribed at some boundary part Γn. The rest of the boundary is equipped with Dirichlet or nonlinear Robin type BC. The solution is found via linearization. We design a robust and efficient approximation scheme. Error estimates for...