On the Rate of Convergence of the Preconditioned Conjugate Gradient Method.
In this paper the solution of a finite element approximation of a linear obstacle plate problem is investigated. A simple version of an interior point method and a block pivoting algorithm have been proposed for the solution of this problem. Special purpose implementations of these procedures are included and have been used in the solution of a set of test problems. The results of these experiences indicate that these procedures are quite efficient to deal with these instances and compare favourably...
The present paper studies an optimization problem of dynamically loaded cylindrical tubes. This is a problem of linear elasticity theory. As we search for the optimal thickness of the tube which minimizes the displacement under forces, this is a problem of shape optimization. The mathematical model is given by a differential equation (ODE and PDE, respectively); the mechanical problem is described as an optimal control problem. We consider both the stationary (time independent) and the transient...
An abstract framework for constructing stable decompositions of the spaces corresponding to general symmetric positive definite problems into “local” subspaces and a global “coarse” space is developed. Particular applications of this abstract framework include practically important problems in porous media applications such as: the scalar elliptic (pressure) equation and the stream function formulation of its mixed form, Stokes’ and Brinkman’s equations. The constant in the corresponding abstract...
An abstract framework for constructing stable decompositions of the spaces corresponding to general symmetric positive definite problems into “local” subspaces and a global “coarse” space is developed. Particular applications of this abstract framework include practically important problems in porous media applications such as: the scalar elliptic (pressure) equation and the stream function formulation of its mixed form, Stokes’ and Brinkman’s equations....
We prove that within the frame of smoothed prolongations, rapid coarsening between first two levels can be compensated by massive prolongation smoothing and pre- and post-smoothing derived from the prolongator smoother.
The author proves the existence of the multi-parameter asymptotic error expansion to the usual five-point difference scheme for Dirichlet problems for the linear and semilinear elliptic PDE on the so-called uniform and nearly uniform domains. This expansion leads, by Richardson extrapolation, to a simple process for accelerating the convergence of the method. A numerical example is given.
The numerical solution of the model fourth-order elliptic boundary value problem in two dimensions is presented. The iterative procedure in which the biharmonic operator is splitted into two Laplace operators is used. After formulating the finite-difference approximation of the procedure, a formula for the evaluation of the transformed iteration vectors is developed. The Jacobi semi-iterative, Richardson and A.D.I. iterative Poisson solvers are applied to compute one transformed iteration vector....
The numerical modeling of the fully developed Poiseuille flow of a newtonian fluid in a square section with slip yield boundary condition at the wall is presented. The stick regions in outer corners and the slip region in the center of the pipe faces are exhibited. Numerical computations cover the complete range of the dimensionless number describing the slip yield effect, from a full slip to a full stick flow regime. The resolution of variational inequalities describing the flow is based on the...
The numerical modeling of the fully developed Poiseuille flow of a Newtonian fluid in a square section with slip yield boundary condition at the wall is presented. The stick regions in outer corners and the slip region in the center of the pipe faces are exhibited. Numerical computations cover the complete range of the dimensionless number describing the slip yield effect, from a full slip to a full stick flow regime. The resolution of variational inequalities describing the flow is based on the...
We present a parallel preconditioning method for the iterative solution of the time-harmonic elastic wave equation which makes use of higher-order spectral elements to reduce pollution error. In particular, the method leverages perfectly matched layer boundary conditions to efficiently approximate the Schur complement matrices of a block LDLT factorization. Both sequential and parallel versions of the algorithm are discussed and results for large-scale problems from exploration geophysics are presented....