The Effect of Quadrature Errors in the Numerical Solution of Two-Dimensional Boundary Value Problems by Variational Techniques (Short Communication)
The paper deals with the application of a fast algorithm for the solution of finite-difference systems for boundary-value problems on a standard domain (e.g. on a rectangle) to the solution of a boundary-value problem on a domain of general shape contained in the standard domain. A simple iterative procedure is suggested for the determination of fictitious right-hand sides for the system on the standard domain so that its solution is the desired one. Under the assumptions that are usual for matrices...
We estimate the constant in the strengthened Cauchy-Bunyakowski-Schwarz inequality for hierarchical bilinear finite element spaces and elliptic partial differential equations with coefficients corresponding to anisotropy (orthotropy). It is shown that there is a nontrivial universal estimate, which does not depend on anisotropy. Moreover, this estimate is sharp and the same as for hierarchical linear finite element spaces.
It is well-known that the idea of transferring boundary conditions offers a universal and, in addition, elementary means how to investigate almost all methods for solving boundary value problems for ordinary differential equations. The aim of this paper is to show that the same approach works also for discrete problems, i.e., for difference equations. Moreover, it will be found out that some results of this kind may be obtained also for some particular two-dimensional problems.
Universal bounds for the constant in the strengthened Cauchy-Bunyakowski-Schwarz inequality for piecewise linear-linear and piecewise quadratic-linear finite element spaces in 2 space dimensions are derived. The bounds hold for arbitrary shaped triangles, or equivalently, arbitrary matrix coefficients for both the scalar diffusion problems and the elasticity theory equations.
We derive and analyze adaptive solvers for boundary value problems in which the differential operator depends affinely on a sequence of parameters. These methods converge uniformly in the parameters and provide an upper bound for the maximal error. Numerical computations indicate that they are more efficient than similar methods that control the error in a mean square sense.
We derive and analyze adaptive solvers for boundary value problems in which the differential operator depends affinely on a sequence of parameters. These methods converge uniformly in the parameters and provide an upper bound for the maximal error. Numerical computations indicate that they are more efficient than similar methods that control the error in a mean square sense.
In this paper, our attention is concentrated on the GMRES method for the solution of the system of linear algebraic equations with a nonsymmetric matrix. We perform pre-iterations before starting GMRES and put for the initial approximation in GMRES. We derive an upper estimate for the norm of the error vector in dependence on the th powers of eigenvalues of the matrix . Further we study under what eigenvalues lay-out this upper estimate is the best one. The estimate shows and numerical...