Displaying 161 – 180 of 221

Showing per page

On Monotone and Schwarz Alternating Methods for Nonlinear Elliptic PDEs

Shiu-Hong Lui (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The Schwarz alternating method can be used to solve elliptic boundary value problems on domains which consist of two or more overlapping subdomains. The solution is approximated by an infinite sequence of functions which results from solving a sequence of elliptic boundary value problems in each of the subdomains. In this paper, proofs of convergence of some Schwarz alternating methods for nonlinear elliptic problems which are known to have solutions by the monotone method (also known as the method...

On nonoverlapping domain decomposition methods for the incompressible Navier-Stokes equations

Xuejun Xu, C. O. Chow, S. H. Lui (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, a Dirichlet-Neumann substructuring domain decomposition method is presented for a finite element approximation to the nonlinear Navier-Stokes equations. It is shown that the Dirichlet-Neumann domain decomposition sequence converges geometrically to the true solution provided the Reynolds number is sufficiently small. In this method, subdomain problems are linear. Other version where the subdomain problems are linear Stokes problems is also presented.

On nonoverlapping domain decomposition methods for the incompressible Navier-Stokes equations

Xuejun Xu, C. O. Chow, S. H. Lui (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, a Dirichlet-Neumann substructuring domain decomposition method is presented for a finite element approximation to the nonlinear Navier-Stokes equations. It is shown that the Dirichlet-Neumann domain decomposition sequence converges geometrically to the true solution provided the Reynolds number is sufficiently small. In this method, subdomain problems are linear. Other version where the subdomain problems are linear Stokes problems is also presented.

On selection of interface weights in domain decomposition methods

Čertíková, Marta, Šístek, Jakub, Burda, Pavel (2013)

Programs and Algorithms of Numerical Mathematics

Different choices of the averaging operator within the BDDC method are compared on a series of 2D experiments. Subdomains with irregular interface and with jumps in material coefficients are included into the study. Two new approaches are studied along three standard choices. No approach is shown to be universally superior to others, and the resulting recommendation is that an actual method should be chosen based on properties of the problem.

On the Schwarz algorithms for the elliptic exterior boundary value problems

Faker Ben Belgacem, Miche Fournié, Nabil Gmati, Faten Jelassi (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Tuning the alternating Schwarz method to the exterior problems is the subject of this paper. We present the original algorithm and we propose a modification of it, so that the solution of the subproblem involving the condition at infinity has an explicit integral representation formulas while the solution of the other subproblem, set in a bounded domain, is approximated by classical variational methods. We investigate many of the advantages of the new Schwarz approach: a geometrical convergence...

On the Schwarz algorithms for the Elliptic Exterior Boundary Value Problems

Faker Ben Belgacem, Michel Fournié, Nabil Gmati, Faten Jelassi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Tuning the alternating Schwarz method to the exterior problems is the subject of this paper. We present the original algorithm and we propose a modification of it, so that the solution of the subproblem involving the condition at infinity has an explicit integral representation formulas while the solution of the other subproblem, set in a bounded domain, is approximated by classical variational methods. We investigate many of the advantages of the new Schwarz approach: a geometrical convergence...

Parallel strategies for solving the FETI coarse problem in the PERMON toolbox

Vašatová, Alena, Tomčala, Jiří, Sojka, Radim, Pecha, Marek, Kružík, Jakub, Horák, David, Hapla, Václav, Čermák, Martin (2017)

Programs and Algorithms of Numerical Mathematics

PERMON (Parallel, Efficient, Robust, Modular, Object-oriented, Numerical) is a newly emerging collection of software libraries, uniquely combining Quadratic Programming (QP) algorithms and Domain Decomposition Methods (DDM). Among the main applications are contact problems of mechanics. This paper gives an overview of PERMON and selected ingredients improving scalability, demonstrated by numerical experiments.

Penalties, Lagrange multipliers and Nitsche mortaring

Christian Grossmann (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Penalty methods, augmented Lagrangian methods and Nitsche mortaring are well known numerical methods among the specialists in the related areas optimization and finite elements, respectively, but common aspects are rarely available. The aim of the present paper is to describe these methods from a unifying optimization perspective and to highlight some common features of them.

Replicant compression coding in Besov spaces

Gérard Kerkyacharian, Dominique Picard (2010)

ESAIM: Probability and Statistics

We present here a new proof of the theorem of Birman and Solomyak on the metric entropy of the unit ball of a Besov space B π , q s on a regular domain of d . The result is: if s - d(1/π - 1/p)+> 0, then the Kolmogorov metric entropy satisfies H(ε) ~ ε-d/s. This proof takes advantage of the representation of such spaces on wavelet type bases and extends the result to more general spaces. The lower bound is a consequence of very simple probabilistic exponential inequalities. To prove the upper bound,...

Replicant compression coding in Besov spaces

Gérard Kerkyacharian, Dominique Picard (2003)

ESAIM: Probability and Statistics

We present here a new proof of the theorem of Birman and Solomyak on the metric entropy of the unit ball of a Besov space B π , q s on a regular domain of d . The result is: if s - d ( 1 / π - 1 / p ) + > 0 , then the Kolmogorov metric entropy satisfies H ( ϵ ) ϵ - d / s . This...

Resilient asynchronous primal Schur method

Guillaume Gbikpi-Benissan, Frédéric Magoulès (2022)

Applications of Mathematics

This paper introduces the application of asynchronous iterations theory within the framework of the primal Schur domain decomposition method. A suitable relaxation scheme is designed, whose asynchronous convergence is established under classical spectral radius conditions. For the usual case where local Schur complement matrices are not constructed, suitable splittings based only on explicitly generated matrices are provided. Numerical experiments are conducted on a supercomputer for both Poisson's...

Currently displaying 161 – 180 of 221