On the Multi-Level Splitting of Finite Element Squares.
Using a weaker version of the Newton-Kantorovich theorem, we provide a discretization result to find finite element solutions of elliptic boundary value problems. Our hypotheses are weaker and under the same computational cost lead to finer estimates on the distances involved and a more precise information on the location of the solution than before.
Some methods for the numerical approximation of time-dependent and steady first-order Hamilton-Jacobi equations are reviewed. Most of the discussion focuses on conformal triangular-type meshes, but we show how to extend this to the most general meshes. We review some first-order monotone schemes and also high-order ones specially dedicated to steady problems.
We propose, analyze, and compare several numerical methods for the computation of the deformation of a pressurized martensitic thin film. Numerical results have been obtained for the hysteresis of the deformation as the film transforms reversibly from austenite to martensite.
We propose, analyze, and compare several numerical methods for the computation of the deformation of a pressurized martensitic thin film. Numerical results have been obtained for the hysteresis of the deformation as the film transforms reversibly from austenite to martensite.
Karátson and Korotov developed a sharp upper global a posteriori error estimator for a large class of nonlinear problems of elliptic type, see J. Karátson, S. Korotov (2009). The goal of this paper is to check its numerical performance, and to demonstrate the efficiency and accuracy of this estimator on the base of quasilinear elliptic equations of the second order. The focus will be on the technical and numerical aspects and on the components of the error estimation, especially on the adequate...
An axisymmetric second order elliptic problem with mixed boundarz conditions is considered. A part of the boundary has to be found so as to minimize one of four types of cost functionals. The numerical realization is presented in detail. The convergence of piecewise linear approximations is proved. Several numerical examples are given.
The goal of this contribution is to find the optimal finite element space for solving a particular boundary value problem in one spatial dimension. In other words, the optimal use of available degrees of freedom is sought after. This is done through optimizing both the mesh and the polynomial degree of the basis functions. The resulting combinatorial optimization problem is solved in parallel by a Matlab program running on a cluster of multi-core personal computers.
The design of an experiment, e.g., the setting of initial conditions, strongly influences the accuracy of the process of determining model parameters from data. The key concept relies on the analysis of the sensitivity of the measured output with respect to the model parameters. Based on this approach we optimize an experimental design factor, the initial condition for an inverse problem of a model parameter estimation. Our approach, although case independent, is illustrated at the FRAP (Fluorescence...