Displaying 1421 – 1440 of 2193

Showing per page

On FE-grid relocation in solving unilateral boundary value problems by FEM

Jaroslav Haslinger, Pekka Neittaanmäki, Kimmo Salmenjoki (1992)

Applications of Mathematics

We consider FE-grid optimization in elliptic unilateral boundary value problems. The criterion used in grid optimization is the total potential energy of the system. It is shown that minimization of this cost functional means a decrease of the discretization error or a better approximation of the unilateral boundary conditions. Design sensitivity analysis is given with respect to the movement of nodal points. Numerical results for the Dirichlet-Signorini problem for the Laplace equation and the...

On finite element approximation of fluid structure interaction by Taylor-Hood and Scott-Vogelius elements

Vacek, Karel, Sváček, Petr (2023)

Programs and Algorithms of Numerical Mathematics

This paper focuses on mathematical modeling and finite element simulation of fluid-structure interaction problems. A simplified problem of two-dimensional incompressible fluid flow interacting with a rigid structure, whose motion is described with one degree of freedom, is considered. The problem is mathematically described and numerically approximated using the finite element method. Two possibilities, namely Taylor-Hood and Scott-Vogelius elements are presented and implemented. Finally, numerical...

On Finite Element Methods for 2nd order (semi–) periodic Eigenvalue Problems

De Schepper, H. (2000)

Serdica Mathematical Journal

We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is...

On fluid structure interaction problems of the heated cylinder approximated by the finite element method

Vacek, Karel, Sváček, Petr (2025)

Programs and Algorithms of Numerical Mathematics

This study addresses the problem of the flow around circular cylinders with mixed convection. The focus is on suppressing the vortex-induced vibration (VIV) of the cylinder through heating. The problem is mathematically described using the arbitrary Lagrangian-Eulerian (ALE) method and Boussinesq approximation for simulating fluid flow and heat transfer. The fluid flow is modeled via incompressible Navier-Stokes equations in the ALE formulation with source term, which represent the density variation...

On generalized difference equations

Miroslav Bosák, Jiří Gregor (1987)

Aplikace matematiky

In this paper linear difference equations with several independent variables are considered, whose solutions are functions defined on sets of n -dimensional vectors with integer coordinates. These equations could be called partial difference equations. Existence and uniqueness theorems for these equations are formulated and proved, and interconnections of such results with the theory of linear multidimensional digital systems are investigated. Numerous examples show essential differences of the results...

On interpolation error on degenerating prismatic elements

Ali Khademi, Sergey Korotov, Jon Eivind Vatne (2018)

Applications of Mathematics

We propose an analogue of the maximum angle condition (commonly used in finite element analysis for triangular and tetrahedral meshes) for the case of prismatic elements. Under this condition, prisms in the meshes may degenerate in certain ways, violating the so-called inscribed ball condition presented by P. G. Ciarlet (1978), but the interpolation error remains of the order O ( h ) in the H 1 -norm for sufficiently smooth functions.

On iterative solution of nonlinear heat-conduction and diffusion problems

Herbert Gajewski (1977)

Aplikace matematiky

The present paper deals with the numerical solution of the nonlinear heat equation. An iterative method is suggested in which the iterations are obtained by solving linear heat equation. The convergence of the method is proved under very natural conditions on given input data of the original problem. Further, questions of convergence of the Galerkin method applied to the original equation as well as to the linear equations in the above mentioned iterative method are studied.

On mesh independence and Newton-type methods

Owe Axelsson (1993)

Applications of Mathematics

Mesh-independent convergence of Newton-type methods for the solution of nonlinear partial differential equations is discussed. First, under certain local smoothness assumptions, it is shown that by properly relating the mesh parameters H and h for a coarse and a fine discretization mesh, it suffices to compute the solution of the nonlinear equation on the coarse mesh and subsequently correct it once using the linearized (Newton) equation on the fine mesh. In this way the iteration error will be...

Currently displaying 1421 – 1440 of 2193