On a numerical approach to Stefan-like problems.
A simple explicit numerical scheme is proposed for the solution of the Gardner–Ostrovsky equation (ut + cux + α uux + α1u2ux + βuxxx)x = γu which is also known as the extended rotation-modified Korteweg–de Vries (KdV) equation. This equation is used for the description of internal oceanic waves affected by Earth’ rotation. Particular versions of this equation with zero some of coefficients, α, α1, β, or γ are also known in numerous applications....
Si discretizza il problema dell'ostacolo parabolico con differenze all'indietro nel tempo ed elementi finiti lineari nello spazio e si dimostrano stime dell'errore per la frontiera libera discreta.
The solvability of time-harmonic Maxwell equations in the 3D-case with nonhomogeneous conductivities is considered by adapting Sobolev space technique and variational formulation of the problem in question. Moreover, a finite element approximation is presented in the 3D-case together with an error estimate in the energy norm. Some remarks are given to the 2D-problem arising from geophysics.
We present a weak parametrix of the operator of the CFIE equation. An interesting feature of this parametrix is that it is compatible with different discretization strategies and hence allows for the construction of efficient preconditioners dedicated to the CFIE. Furthermore, one shows that the underlying operator of the CFIE verifies an uniform discrete Inf-Sup condition which allows to predict an original convergence result of the numerical solution of the CFIE to the exact one.
On exhibe dans cette note une paramétrix (au sens faible) de l'opérateur sous-jacent à l'équation CFIE de l'électromagnétisme. L'intérêt de cette paramétrix est de se prêter à différentes stratégies de discrétisation et ainsi de pouvoir être utilisée comme préconditionneur de la CFIE. On montre aussi que l'opérateur sous-jacent à la CFIE satisfait une condition Inf-Sup discrète uniforme, applicable aux espaces de discrétisation usuellement rencontrés en électromagnétisme, et qui permet d'établir...