Displaying 301 – 320 of 532

Showing per page

On the conjecture relating minimax and minimean complexity norms

Peter Růžička, Juraj Wiedermann (1979)

Aplikace matematiky

Using counterexample it has been shown that an algorithm which is minimax optimal and over all minimax optimal algorithms is minimean optimal and has a uniform behaviour need not to be minimean optimal.

On the median-of-k version of Hoare's selection algorithm

Rudolf Grübel (2010)

RAIRO - Theoretical Informatics and Applications

In Hoare's (1961) original version of the algorithm   the partitioning element in the central divide-and-conquer step is chosen uniformly at random from the set S in question. Here we consider a variant where this element is the median of a sample of size 2k+1 from S. We investigate convergence in distribution of the number of comparisons required and obtain a simple explicit result for the limiting average performance of the median-of-three version.

On the number of iterations required by Von Neumann addition

Rudolf Grübel, Anke Reimers (2001)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We investigate the number of iterations needed by an addition algorithm due to Burks et al. if the input is random. Several authors have obtained results on the average case behaviour, mainly using analytic techniques based on generating functions. Here we take a more probabilistic view which leads to a limit theorem for the distribution of the random number of steps required by the algorithm and also helps to explain the limiting logarithmic periodicity as a simple discretization phenomenon.

On the number of iterations required by Von Neumann addition

Rudolf Grübel, Anke Reimers (2010)

RAIRO - Theoretical Informatics and Applications

We investigate the number of iterations needed by an addition algorithm due to Burks et al. if the input is random. Several authors have obtained results on the average case behaviour, mainly using analytic techniques based on generating functions. Here we take a more probabilistic view which leads to a limit theorem for the distribution of the random number of steps required by the algorithm and also helps to explain the limiting logarithmic periodicity as a simple discretization phenomenon.

On the parallel complexity of the alternating Hamiltonian cycle problem

E. Bampis, Y. Manoussakis, I. Milis (2010)

RAIRO - Operations Research

Given a graph with colored edges, a Hamiltonian cycle is called alternating if its successive edges differ in color. The problem of finding such a cycle, even for 2-edge-colored graphs, is trivially NP-complete, while it is known to be polynomial for 2-edge-colored complete graphs. In this paper we study the parallel complexity of finding such a cycle, if any, in 2-edge-colored complete graphs. We give a new characterization for such a graph admitting an alternating Hamiltonian cycle which allows...

On the proper intervalization of colored caterpillar trees

Carme Àlvarez, Maria Serna (2009)

RAIRO - Theoretical Informatics and Applications

This paper studies the computational complexity of the proper interval colored graph problem (PICG), when the input graph is a colored caterpillar, parameterized by hair length. In order prove our result we establish a close relationship between the PICG and a graph layout problem the proper colored layout problem (PCLP). We show a dichotomy: the PICG and the PCLP are NP-complete for colored caterpillars of hair length ≥2, while both problems are in P for colored caterpillars of hair length <2. For...

Currently displaying 301 – 320 of 532