Une famille de monoïdes inversifs 0-bisimples généralisant le monoïde bicyclique
Nous généralisons le théorème de Cobham ([2]), en démontrant qu'une partie infinie de ℕ est reconnaissable en base k (k entier strictement plus grand que un) et reconnaissable dans un système de numération associé à un nombre de Pisot unitaire (ayant une propriété arithmétique supplémentaire) si et seulement si elle est ultimement périodique.
Cet article introduit une nouvelle transformation des réseaux de Petri généralisés appelée l’abstraction généralisée. C’est une réduction dont nous montrons qu’elle conserve les invariants du réseau de départ et les propriétés structurelles les plus importantes. Une fonction de transformation de marquages nous permet d’introduire l’étude de la conservation des propriétés comportementales.
Cet article introduit une nouvelle transformation des réseaux de Petri généralisés appelée l'abstraction généralisée. C'est une réduction dont nous montrons qu'elle conserve les invariants du réseau de départ et les propriétés structurelles les plus importantes. Une fonction de transformation de marquages nous permet d'introduire l'étude de la conservation des propriétés comportementales.
Duplication is the replacement of a factor w within a word by ww. This operation can be used iteratively to generate languages starting from words or sets of words. By undoing duplications, one can eventually reach a square-free word, the original word's duplication root. The duplication root is unique, if the length of duplications is fixed. Based on these unique roots we define the concept of duplication code. Elementary properties are stated, then the conditions under which infinite duplication...
Sets of integers form a monoid, where the product of two sets A and B is defined as the set containing a+b for all and . We give a characterization of when a family of finite sets is a code in this monoid, that is when the sets do not satisfy any nontrivial relation. We also extend this result for some infinite sets, including all infinite rational sets.
Sets of integers form a monoid, where the product of two sets A and B is defined as the set containing a+b for all and . We give a characterization of when a family of finite sets is a code in this monoid, that is when the sets do not satisfy any nontrivial relation. We also extend this result for some infinite sets, including all infinite rational sets.
We define a kind of cellular automaton called a hexagonal partitioned cellular automaton (HPCA), and study logical universality of a reversible HPCA. We give a specific 64-state reversible HPCA H1, and show that a Fredkin gate can be embedded in this cellular space. Since a Fredkin gate is known to be a universal logic element, logical universality of H1 is concluded. Although the number of states of H1 is greater than those of the previous models of reversible CAs having universality,...
The paper presents a system of Composite Graph Grammars (CGGs) modelling adaptive two dimensional hp Finite Element Method (hp-FEM) algorithms with rectangular finite elements. A computational mesh is represented by a composite graph. The operations performed over the mesh are defined by the graph grammar rules. The CGG system contains different graph grammars defining different kinds of rules of mesh transformations. These grammars allow one to generate the initial mesh, assign values to element...