Displaying 81 – 100 of 305

Showing per page

On maximal QROBDD’s of boolean functions

Jean-Francis Michon, Jean-Baptiste Yunès, Pierre Valarcher (2005)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We investigate the structure of “worst-case” quasi reduced ordered decision diagrams and Boolean functions whose truth tables are associated to: we suggest different ways to count and enumerate them. We, then, introduce a notion of complexity which leads to the concept of “hard” Boolean functions as functions whose QROBDD are “worst-case” ones. So we exhibit the relation between hard functions and the Storage Access function (also known as Multiplexer).

On maximal QROBDD's of Boolean functions

Jean-Francis Michon, Jean-Baptiste Yunès, Pierre Valarcher (2010)

RAIRO - Theoretical Informatics and Applications

We investigate the structure of “worst-case” quasi reduced ordered decision diagrams and Boolean functions whose truth tables are associated to: we suggest different ways to count and enumerate them. We, then, introduce a notion of complexity which leads to the concept of “hard” Boolean functions as functions whose QROBDD are “worst-case” ones. So we exhibit the relation between hard functions and the Storage Access function (also known as Multiplexer).

On minimizing total tardiness in a serial batching problem

Philippe Baptiste, Antoine Jouglet (2001)

RAIRO - Operations Research - Recherche Opérationnelle

We study the problem of scheduling jobs on a serial batching machine to minimize total tardiness. Jobs of the same batch start and are completed simultaneously and the length of a batch equals the sum of the processing times of its jobs. When a new batch starts, a constant setup time s occurs. This problem 1 | s-batch | T i is known to be NP-Hard in the ordinary sense. In this paper we show that it is solvable in pseudopolynomial time by dynamic programming.

On Minimizing Total Tardiness in a Serial Batching Problem

Philippe Baptiste, Antoine Jouglet (2010)

RAIRO - Operations Research

We study the problem of scheduling jobs on a serial batching machine to minimize total tardiness. Jobs of the same batch start and are completed simultaneously and the length of a batch equals the sum of the processing times of its jobs. When a new batch starts, a constant setup time s occurs. This problem 1|s-batch | ∑Ti is known to be NP-Hard in the ordinary sense. In this paper we show that it is solvable in pseudopolynomial time by dynamic programming.

On multiplicatively dependent linear numeration systems, and periodic points

Christiane Frougny (2002)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers β and γ respectively, such that β and γ are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of a sofic dynamical system associated with some Parry number.

On multiplicatively dependent linear numeration systems, and periodic points

Christiane Frougny (2010)

RAIRO - Theoretical Informatics and Applications

Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers β and γ respectively, such that β and γ are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of a sofic dynamical system associated with some Parry number.

On Multiset Ordering

Grzegorz Bancerek (2016)

Formalized Mathematics

Formalization of a part of [11]. Unfortunately, not all is possible to be formalized. Namely, in the paper there is a mistake in the proof of Lemma 3. It states that there exists x ∈ M1 such that M1(x) > N1(x) and (∀y ∈ N1)x ⊀ y. It should be M1(x) ⩾ N1(x). Nevertheless we do not know whether x ∈ N1 or not and cannot prove the contradiction. In the article we referred to [8], [9] and [10].

Currently displaying 81 – 100 of 305