Special issue dedicated to the thirteenth “Journées Montoises d'Informatique Théorique”
We consider the position and number of occurrences of squares in the Thue-Morse sequence, and show that the corresponding sequences are 2-regular. We also prove that changing any finite but nonzero number of bits in the Thue-Morse sequence creates an overlap, and any linear subsequence of the Thue-Morse sequence (except those corresponding to decimation by a power of 2) contains an overlap.
The cyclic shift of a language , defined as =, is an operation known to preserve both regularity and context-freeness. Its descriptional complexity has been addressed in Maslov’s pioneering paper on the state complexity of regular language operations [Soviet Math. Dokl. 11 (1970) 1373–1375], where a high lower bound for partial DFAs using a growing alphabet was given. We improve this result by using a fixed 4-letter alphabet, obtaining a lower bound (n-1)! 2, which shows that the state complexity...
The cyclic shift of a language L, defined as SHIFT(L) = {vu | uv ∈ L}, is an operation known to preserve both regularity and context-freeness. Its descriptional complexity has been addressed in Maslov's pioneering paper on the state complexity of regular language operations [Soviet Math. Dokl.11 (1970) 1373–1375], where a high lower bound for partial DFAs using a growing alphabet was given. We improve this result by using a fixed 4-letter alphabet, obtaining a lower bound (n-1)! . 2(n-1)(n-2), which...
We consider the following bottleneck transportation problem with both random and fuzzy factors. There exist supply points with flexible supply quantity and demand points with flexible demand quantity. For each supply-demand point pair, the transportation time is an independent positive random variable according to a normal distribution. Satisfaction degrees about the supply and demand quantity are attached to each supply and each demand point, respectively. They are denoted by membership functions...
Wang automata are devices for picture language recognition recently introduced by us, which characterize the class REC of recognizable picture languages. Thus, Wang automata are equivalent to tiling systems or online tessellation acceptors, and are based like Wang systems on labeled Wang tiles. The present work focus on scanning strategies, to prove that the ones Wang automata are based on are those following four kinds of movements: boustrophedonic, “L-like”, “U-like”, and spirals.