Factor complexity of infinite words associated with non-simple Parry numbers.
We describe factor frequencies of the generalized Thue-Morse word defined for , as the fixed point starting in of the morphism where and where the letters are expressed modulo . We...
A square is the concatenation of a nonempty word with itself. A word has period p if its letters at distance p match. The exponent of a nonempty word is the quotient of its length over its smallest period. In this article we give a proof of the fact that there exists an infinite binary word which contains finitely many squares and simultaneously avoids words of exponent larger than 7/3. Our infinite word contains 12 squares, which is the smallest possible number of squares to get the property, and...
A square is the concatenation of a nonempty word with itself. A word has period p if its letters at distance p match. The exponent of a nonempty word is the quotient of its length over its smallest period. In this article we give a proof of the fact that there exists an infinite binary word which contains finitely many squares and simultaneously avoids words of exponent larger than 7/3. Our infinite word contains 12 squares, which is the smallest possible number of squares to get the property, and...
A square is the concatenation of a nonempty word with itself. A word has period p if its letters at distance p match. The exponent of a nonempty word is the quotient of its length over its smallest period. In this article we give a proof of the fact that there exists an infinite binary word which contains finitely many squares and simultaneously avoids words of exponent larger than 7/3. Our infinite word contains 12 squares, which is the smallest possible number of squares to get the property, and...
We study the concept of an -partition of the vertex set of a graph , which includes all vertex partitioning problems into four parts which we require to be nonempty with only external constraints according to the structure of a model graph , with the exception of two cases, one that has already been classified as polynomial, and the other one remains unclassified. In the context of more general vertex-partition problems, the problems addressed in this paper have these properties: non-list, -part,...
We study the concept of an H-partition of the vertex set of a graph G, which includes all vertex partitioning problems into four parts which we require to be nonempty with only external constraints according to the structure of a model graph H, with the exception of two cases, one that has already been classified as polynomial, and the other one remains unclassified. In the context of more general vertex-partition problems, the problems addressed in this paper have these properties: non-list, 4-part, external...
This paper is the first step in the solution of the problem of finite completion of comma-free codes. We show that every finite comma-free code is included in a finite comma-free code of particular kind, which we called, for lack of a better term, canonical comma-free code. Certainly, finite maximal comma-free codes are always canonical. The final step of the solution which consists in proving further that every canonical comma-free code is completed to a finite maximal comma-free code, is intended...
This paper is the first step in the solution of the problem of finite completion of comma-free codes. We show that every finite comma-free code is included in a finite comma-free code of particular kind, which we called, for lack of a better term, canonical comma-free code. Certainly, finite maximal comma-free codes are always canonical. The final step of the solution which consists in proving further that every canonical comma-free code is completed to a finite maximal comma-free code, is intended...
This paper is a sequel to an earlier paper of the present author, in which it was proved that every finite comma-free code is embedded into a so-called (finite) canonical comma-free code. In this paper, it is proved that every (finite) canonical comma-free code is embedded into a finite maximal comma-free code, which thus achieves the conclusion that every finite comma-free code has finite completions.
This paper is a sequel to an earlier paper of the present author, in which it was proved that every finite comma-free code is embedded into a so-called (finite) canonical comma-free code. In this paper, it is proved that every (finite) canonical comma-free code is embedded into a finite maximal comma-free code, which thus achieves the conclusion that every finite comma-free code has finite completions.