Periodicity problem of substitutions over ternary alphabets
In this paper, we characterize the substitutions over a three-letter alphabet which generate a ultimately periodic sequence.
In this paper, we characterize the substitutions over a three-letter alphabet which generate a ultimately periodic sequence.
In this paper, we characterize the substitutions over a three-letter alphabet which generate a ultimately periodic sequence.
In this paper a formulation for the fuzzy p-median model in a fuzzy environment is presented. The model allows to find optimal locations of p facilities and their related cost when data related to the node demands and the edge distances are imprecise and uncertain and also to know the degree of certainty of the solution. For the sake of illustration, the proposed model is applied in a reduced map of Kinshasa (Democratic Republic of Congo) obtaining results which are rather than realistic ones.
We tackle the problem of studying which kind of functions can occur as complexity functions of formal languages of a certain type. We prove that an important narrow subclass of rational languages contains languages of polynomial complexity of any integer degree over any non-trivial alphabet.
We tackle the problem of studying which kind of functions can occur as complexity functions of formal languages of a certain type. We prove that an important narrow subclass of rational languages contains languages of polynomial complexity of any integer degree over any non-trivial alphabet.
Word and tree codes are studied in a common framework, that of polypodes which are sets endowed with a substitution like operation. Many examples are given and basic properties are examined. The code decomposition theorem is valid in this general setup.
Word and tree codes are studied in a common framework, that of polypodes which are sets endowed with a substitution like operation. Many examples are given and basic properties are examined. The code decomposition theorem is valid in this general setup.
In this paper, we consider two typical problems on a locally finite connected graph. The first one is to study the Bochner formula for the Laplacian operator on a locally finite connected graph. The other one is to obtain global nontrivial nonnegative solution to porous-media equation via the use of Aronson-Benilan argument. We use the curvature dimension condition to give a characterization two point graph. We also give a porous-media equation criterion about stochastic completeness of the graph....