Convex Polyhedra With Triangular Faces and Cone Triangulation
We add a sufficient condition for validity of Propo- sition 4.10 in the paper Frougny et al. (2004). This condition is not a necessary one, it is nevertheless convenient, since anyway most of the statements in the paper Frougny et al. (2004) use it.
We add a sufficient condition for validity of Propo- sition 4.10 in the paper Frougny et al. (2004). This condition is not a necessary one, it is nevertheless convenient, since anyway most of the statements in the paper Frougny et al. (2004) use it.
An algorithm is corrected here that was presented as Theorem 2 in [Š. Holub, RAIRO-Theor. Inf. Appl. 40 (2006) 583–591]. It is designed to calculate the maximum length of a nontrivial word with a given set of periods.
An algorithm is corrected here that was presented as Theorem 2 in [Š. Holub, RAIRO-Theor. Inf. Appl. 40 (2006) 583–591]. It is designed to calculate the maximum length of a nontrivial word with a given set of periods.
We first define the curvature indices of vertices of digital objects. Second, using these indices, we define the principal normal vectors of digital curves and surfaces. These definitions allow us to derive the Gauss-Bonnet theorem for digital objects. Third, we introduce curvature flow for isothetic polytopes defined in a digital space.
The cutwidth is an important graph-invariant in circuit layout designs. The cutwidth of a graph G is the minimum value of the maximum number of overlap edges when G is embedded into a line. A caterpillar is a tree which yields a path when all its leaves are removed. An iterated caterpillar is a tree which yields a caterpillar when all its leaves are removed. In this paper we present an exact formula for the cutwidth of the iterated caterpillars.
We study two topological properties of the 5-ary -cube . Given two arbitrary distinct nodes and in , we prove that there exists an - path of every length ranging from to , where . Based on this result, we prove that is 5-edge-pancyclic by showing that every edge in lies on a cycle of every length ranging from to .
We study two topological properties of the 5-ary n-cube . Given two arbitrary distinct nodes x and y in , we prove that there exists an x-y path of every length ranging from 2n to 5n - 1, where n ≥ 2. Based on this result, we prove that is 5-edge-pancyclic by showing that every edge in lies on a cycle of every length ranging from 5 to 5n.