Previous Page 7

Displaying 121 – 133 of 133

Showing per page

Asymptotic spectral analysis of generalized Erdős-Rényi random graphs

Song Liang, Nobuaki Obata, Shuji Takahashi (2007)

Banach Center Publications

Motivated by the Watts-Strogatz model for a complex network, we introduce a generalization of the Erdős-Rényi random graph. We derive a combinatorial formula for the moment sequence of its spectral distribution in the sparse limit.

Atoms and partial orders of infinite languages

Werner Kuich, N. W. Sauer (2001)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We determine minimal elements, i.e., atoms, in certain partial orders of factor closed languages under . This is in analogy to structural Ramsey theory which determines minimal structures in partial orders under embedding.

Atoms and partial orders of infinite languages

Werner Kuich, N. W. Sauer (2010)

RAIRO - Theoretical Informatics and Applications

We determine minimal elements, i.e., atoms, in certain partial orders of factor closed languages under ⊆. This is in analogy to structural Ramsey theory which determines minimal structures in partial orders under embedding.

Automata, algebraicity and distribution of sequences of powers

Jean-Paul Allouche, Jean-Marc Deshouillers, Teturo Kamae, Tadahiro Koyanagi (2001)

Annales de l’institut Fourier

Let K be a finite field of characteristic p . Let K ( ( x ) ) be the field of formal Laurent series f ( x ) in x with coefficients in K . That is, f ( x ) = n = n 0 f n x n with n 0 𝐙 and f n K ( n = n 0 , n 0 + 1 , ) . We discuss the distribution of ( { f m } ) m = 0 , 1 , 2 , for f K ( ( x ) ) , where { f } : = n = 0 f n x n K [ [ x ] ] denotes the nonnegative part of f K ( ( x ) ) . This is a little different from the real number case where the fractional part that excludes constant term (digit of order 0) is considered. We give an alternative proof of a result by De Mathan obtaining the generic distribution for f with f n 0 for some n < 0 . This distribution is...

Automata, Borel functions and real numbers in Pisot base

Benoit Cagnard, Pierre Simonnet (2007)

RAIRO - Theoretical Informatics and Applications

This note is about functions ƒ : Aω → Bω whose graph is recognized by a Büchi finite automaton on the product alphabet A x B. These functions are Baire class 2 in the Baire hierarchy of Borel functions and it is decidable whether such function are continuous or not. In 1920 W. Sierpinski showed that a function f : is Baire class 1 if and only if both the overgraph and the undergraph of f are Fσ. We show that such characterization is also true for functions on infinite words if we replace the real...

Automata-based representations for infinite graphs

Salvatore La Torre, Margherita Napoli (2001)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

New compact representations of infinite graphs are investigated. Finite automata are used to represent labelled hyper-graphs which can be also multi-graphs. Our approach consists of a general framework where vertices are represented by a regular prefix-free language and edges are represented by a regular language and a function over tuples. We consider three different functions over tuples: given a tuple the first function returns its first difference, the second one returns its suffix and the last...

Automata-based Representations for Infinite Graphs

Salvatore La Torre, Margherita Napoli (2010)

RAIRO - Theoretical Informatics and Applications

New compact representations of infinite graphs are investigated. Finite automata are used to represent labelled hyper-graphs which can be also multi-graphs. Our approach consists of a general framework where vertices are represented by a regular prefix-free language and edges are represented by a regular language and a function over tuples. We consider three different functions over tuples: given a tuple the first function returns its first difference, the second one returns its suffix and...

Automates calculant la complexité de suites automatiques

Théodore Tapsoba (1994)

Journal de théorie des nombres de Bordeaux

Le point fixe u d’une substitution injective uniforme de module σ sur un alphabet A est examiné du point de vue du nombre P ( u , n ) de ses blocs distincts de longueur n . Lorsque u est minimal et A de cardinal deux, nous construisons un automate pour la suite n P ( u , n + 1 ) - P ( u , n ) .

Automates et algébricités

Jean-Paul Allouche (2005)

Journal de Théorie des Nombres de Bordeaux

Dans quelle mesure la régularité des chiffres d’un nombre réel dans une base entière, celle des quotients partiels du développement en fraction continuée d’un nombre réel, ou celle des coefficients d’une série formelle sont-elles liées à l’algébricité ou à la transcendance de ce réel ou de cette série formelle  ? Nous proposons un survol de résultats récents dans le cas où la régularité évoquée ci-dessus est celle de suites automatiques, substitutives, ou sturmiennes.

Automaticity IV : sequences, sets, and diversity

Jeffrey Shallit (1996)

Journal de théorie des nombres de Bordeaux

This paper studies the descriptional complexity of (i) sequences over a finite alphabet ; and (ii) subsets of N (the natural numbers). If ( s ( i ) ) i 0 is a sequence over a finite alphabet Δ , then we define the k -automaticity of s , A s k ( n ) , to be the smallest possible number of states in any deterministic finite automaton that, for all i with 0 i n , takes i expressed in base k as input and computes s ( i ) . We give examples of sequences that have high automaticity in all bases k ; for example, we show that the characteristic...

Currently displaying 121 – 133 of 133

Previous Page 7