Displaying 101 – 120 of 135

Showing per page

Several examples of nonholonomic mechanical systems

Martin Swaczyna (2011)

Communications in Mathematics

A unified geometric approach to nonholonomic constrained mechanical systems is applied to several concrete problems from the classical mechanics of particles and rigid bodies. In every of these examples the given constraint conditions are analysed, a corresponding constraint submanifold in the phase space is considered, the corresponding constrained mechanical system is modelled on the constraint submanifold, the reduced equations of motion of this system (i.e. equations of motion defined on the...

Some concepts of regularity for parametric multiple-integral problems in the calculus of variations

M. Crampin, D. J. Saunders (2009)

Czechoslovak Mathematical Journal

We show that asserting the regularity (in the sense of Rund) of a first-order parametric multiple-integral variational problem is equivalent to asserting that the differential of the projection of its Hilbert-Carathéodory form is multisymplectic, and is also equivalent to asserting that Dedecker extremals of the latter ( m + 1 ) -form are holonomic.

Sui moti polinomiali

Franco De Franchis (1970)

Rendiconti del Seminario Matematico della Università di Padova

Symmetries and currents in nonholonomic mechanics

Michal Čech, Jana Musilová (2014)

Communications in Mathematics

In this paper we derive general equations for constraint Noethertype symmetries of a first order non-holonomic mechanical system and the corresponding currents, i.e. functions constant along trajectories of the nonholonomic system. The approach is based on a consistent and effective geometrical theory of nonholonomic constrained systems on fibred manifolds and their jet prolongations, first presented and developed by Olga Rossi. As a representative example of application of the geometrical theory...

Systèmes hamiltoniens k-symplectiques.

Azzouz Awane, Mohamed Belam, Sadik Fikri, Mohammed Lahmouz, Bouchra Naanani (2002)

Revista Matemática Complutense

We study some properties of the k-symplectic Hamiltonian systems in analogy with the well-known classical Hamiltonian systems. The integrability of k-symplectic Hamiltonian systems and the relationships with the Nambu's statistical mechanics are given.

The complex geometry of an integrable system

Ahmed Lesfari (2003)

Archivum Mathematicum

In this paper, a finite dimensional algebraic completely integrable system is considered. We show that the intersection of levels of integrals completes into an abelian surface (a two dimensional complex algebraic torus) of polarization 2 , 8 and that the flow of the system can be linearized on it.

Currently displaying 101 – 120 of 135