On classical dynamics of affinely-rigid bodies subject to the Kirchhoff-Love constraints.
This work presents a setting for the formulation of the mechanics of growing bodies. By the mechanics of growing bodies we mean a theory in which the material structure of the body does not remain fixed. Material points may be added or removed from the body.
The plane strain elastic analysis of a homogeneous and isotropic layer of constant thickness, is formulated using Fourier series expansions in the direction parallel to the layer and suitable Green's functions in the transversal direction. For each frequency the unknown distributions of the Fourier coefficients relevant to the symmetric or skew-symmetric problems are governed by one-dimensional equations which can be solved exactly. The proposed method is used to critically discuss the "transfer"...