Page 1

Displaying 1 – 7 of 7

Showing per page

Neumann problem for one-dimensional nonlinear thermoelasticity

Yoshihiro Shibata (1992)

Banach Center Publications

The global existence theorem of classical solutions for one-dimensional nonlinear thermoelasticity is proved for small and smooth initial data in the case of a bounded reference configuration for a homogeneous medium, considering the Neumann type boundary conditions: traction free and insulated. Moreover, the asymptotic behaviour of solutions is investigated.

Note on a mixed variational principle in finite elasticity

Gérard A. Maugin, Carmine Trimarco (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In the present context the variation is performed keeping the deformed configuration fixed while a suitable material stress tensor S and the material coordinates are required to vary independently. The variational principle turns out to be equivalent to an equilibrium problem of placements and tractions prescribed at the boundary of a body of finite extent.

Numerical modelling of semi-coercive beam problem with unilateral elastic subsoil of Winkler's type

Stanislav Sysala (2010)

Applications of Mathematics

A non-linear semi-coercive beam problem is solved in this article. Suitable numerical methods are presented and their uniform convergence properties with respect to the finite element discretization parameter are proved here. The methods are based on the minimization of the total energy functional, where the descent directions of the functional are searched by solving the linear problems with a beam on bilateral elastic ``springs''. The influence of external loads on the convergence properties is...

Currently displaying 1 – 7 of 7

Page 1