Page 1

Displaying 1 – 10 of 10

Showing per page

Material constraints in continuum mechanics

Stuart S. Antman (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si dimostra che ci sono valide ragioni per considerare la teoria standard dei vincoli interni, nella meccanica dei continui, insufficientemente generale. In particolare, con l’unica eccezione dell’iperelasticità, l’extra-stress dovrebbe dipendere anche dai moltiplicatori di Lagrange, cioè, dallo stress che non effettua lavoro (virtuale).

Minimizers with topological singularities in two dimensional elasticity

Xiaodong Yan, Jonathan Bevan (2008)

ESAIM: Control, Optimisation and Calculus of Variations

For a class of 2-D elastic energies we show that a radial equilibrium solution is the unique global minimizer in a subclass of all admissible maps. The boundary constraint is a double cover of S 1 ; the minimizer u is C 1 and is such that det u vanishes at one point.

Minimizers with topological singularities in two dimensional elasticity

Jonathan Bevan, Xiaodong Yan (2010)

ESAIM: Control, Optimisation and Calculus of Variations

For a class of 2-D elastic energies we show that a radial equilibrium solution is the unique global minimizer in a subclass of all admissible maps. The boundary constraint is a double cover of S1; the minimizer u is C1 and is such that det u vanishes at one point.


Mixed formulation for elastic problems - existence, approximation, and applications to Poisson structures

Julian Ławrynowicz, Alain Mignot, Loucas Papaloucas, Claude Surry (1996)

Banach Center Publications

A mixed formulation is given for elastic problems. Existence and uniqueness of the discretized problem are given for conformal continuous interpolations for the stress tensor components and for the components of the displacement vector. A counterpart of the problem is discussed in the case of an even-dimensional Euclidean space with an associated Hamiltonian vector field and the Poisson structure. For conformal interpolations of the same order the question remains open.

Model problems from nonlinear elasticity: partial regularity results

Menita Carozza, Antonia Passarelli di Napoli (2007)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we prove that every weak and strong local minimizer u W 1 , 2 ( Ω , 3 ) of the functional I ( u ) = Ω | D u | 2 + f ( Adj D u ) + g ( det D u ) , where u : Ω 3 3 , f grows like | Adj D u | p , g grows like | det D u | q and 1<q<p<2, is C 1 , α on an open subset Ω 0 of Ω such that 𝑚𝑒𝑎𝑠 ( Ω Ω 0 ) = 0 . Such functionals naturally arise from nonlinear elasticity problems. The key point in order to obtain the partial regularity result is to establish an energy estimate of Caccioppoli type, which is based on an appropriate choice of the test functions. The limit case p = q 2 is also treated for weak local minimizers. ...

Currently displaying 1 – 10 of 10

Page 1