Solution of the first problem of plane elasticity for multiply connected regions by the method of least squares on the boundary. I
This paper deals with free-energy lower-potentials for some rate-independent one-dimensional models of isothermal finite elastoplasticity proposed in [1]. Extending the thermodynamic arguments of Coleman and Owen [3] to large deformations, the existence, non-uniqueness and regularity of free-energy as function of state are deduced rather than assumed. This approach, along with some optimal control techniques, enables us to construct maximum and minimum free-energy functions and a wide class of differentiable...
The Cauchy–Born rule provides a crucial link between continuum theories of elasticity and the atomistic nature of matter. In its strongest form it says that application of affine displacement boundary conditions to a monatomic crystal will lead to an affine deformation of the whole crystal lattice. We give a general condition in arbitrary dimensions which ensures the validity of the Cauchy–Born rule for boundary deformations which are close to rigid motions. This generalizes results of Friesecke...
Viene esposto il punto di vista dell'autore rispetto ai modelli matematici dell'elasticità ereditaria. Particolare rilievo viene dato all'influenza della topologia dello spazio delle funzioni ammissibili sui concetti fondamentali della teoria.
We extend the well-known reciprocal theorems of linear elasticity to unbounded domains. The theorems do not require that the elastic body is isotropic and homogeneous.
In the present paper we seek the bounce trajectories in a convex set which assume assigned positions in two fixed time instants. We find sufficient conditions in order to obtain the existence of infinitely many bounce trajectories.
Lo scopo del lavoro è di mostrare come nel quadro della teoria sviluppata nelle Note precedenti è possibile includere problemi non autoaggiunti. Viene mostrato che questo è possibile quando si considera il problema di Dirichlet per un'equazione ellittica del secondo ordine non autoaggiunta con coefficienti limitati e misurabili. Sono assai probabili estensioni a problemi più generali.
Viene applicata la teoria della Nota I al problema al contorno dell'elastostatica quando sul contorno vengono prescritte forze nulle. I coefficienti elastici sono supposti solo limitati e misurabili. Viene fatta un'analisi dettagliata per determinare l'operatore base.
Viene applicata la teoria della Nota I al problema al contorno dell'elastostatica quando sul contorno vengono prescritte condizioni miste. I coefficienti elastici sono supposti solo limitati e misurabili. Viene fatta un'analisi dettagliata per determinare l'operatore base. Si fa inoltre vedere come i problemi di trasmissione, relativi a due o più solidi elastici non isotropi e non omogenei incastrati l'uno nell'altro, rientrano nella teoria sviluppata nelle Note precedenti.
Viene applicata la teoria della Nota I al problema al contorno dell'elastostatica quando sul contorno vengono prescritti spostamenti nulli. I coefficienti elastici sono supposti solo limitati e misurabili. Come problema base viene assunto l'analogo problema al contorno per un corpo isotropo omogeneo. Per un tale problema vengono esplicitamente costruiti l'operatore e la matrice di Green e le loro proprietà esaurientemente studiate, in modo tale che la teoria degli operatori intermedi, come sviluppata...