Page 1 Next

Displaying 1 – 20 of 152

Showing per page

A Bermúdez–Moreno algorithm adapted to solve a viscoplastic problem in alloy solidification processes

P. Barral, P. Quintela, M. T. Sánchez (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this work is to present a computationally efficient algorithm to simulate the deformations suffered by a viscoplastic body in a solidification process. This type of problems involves a nonlinearity due to the considered thermo-elastic-viscoplastic law. In our previous papers, this difficulty has been solved by means of a duality method, known as Bermúdez–Moreno algorithm, involving a multiplier which was computed with a fixed point algorithm or a Newton method. In this paper, we will...

A convergence result and numerical study for a nonlinear piezoelectric material in a frictional contact process with a conductive foundation

El-Hassan Benkhira, Rachid Fakhar, Youssef Mandyly (2021)

Applications of Mathematics

We consider two static problems which describe the contact between a piezoelectric body and an obstacle, the so-called foundation. The constitutive relation of the material is assumed to be electro-elastic and involves the nonlinear elastic constitutive Hencky's law. In the first problem, the contact is assumed to be frictionless, and the foundation is nonconductive, while in the second it is supposed to be frictional, and the foundation is electrically conductive. The contact is modeled with the...

A frictionless contact problem for elastic-viscoplastic materials with internal state variable

Lynda Selmani (2013)

Applicationes Mathematicae

We study a mathematical model for frictionless contact between an elastic-viscoplastic body and a foundation. We model the material with a general elastic-viscoplastic constitutive law with internal state variable and the contact with a normal compliance condition. We derive a variational formulation of the model. We establish existence and uniqueness of a weak solution, using general results on first order nonlinear evolution equations with monotone operators and fixed point arguments. Finally,...

A generalization to nonlinear hardening of the first shakedown theorem for discrete elastic-plastic structural models

Giulio Maier (1987)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In the plastic constitutive laws the yield functions are assumed to be linear in the stresses, but generally non-linear in the internal variables which are non-decreasing measures of the contribution to plastic strains by each face of the yield surface. The structural models referred to for simplicity are aggregates of constant-strain finite elements. Influence of geometry changes on equilibrium are allowed for in a linearized way (the equilibrium equation contains a bilinear term in the displacements...

A maximum reduced dissipation principle for nonassociative plasticity

Castrenze Polizzotto (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The concept of reduced plastic dissipation is introduced for a perfectly plastic rate-independent material not obeyng the associated normality rule and characterized by a strictly convex plastic potential function. A maximum principle is provided and shown to play the role of variational statement for the nonassociative constitutive equations. The Kuhn-Tucker conditions of this principle describe the actual material behaviour as that of a (fictitious) composite material with two plastic constituents,...

A model of macroscale deformation and microvibration in skeletal muscle tissue

Bernd Simeon, Radu Serban, Linda R. Petzold (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with modeling the passive behavior of skeletal muscle tissue including certain microvibrations at the cell level. Our approach combines a continuum mechanics model with large deformation and incompressibility at the macroscale with chains of coupled nonlinear oscillators. The model verifies that an externally applied vibration at the appropriate frequency is able to synchronize microvibrations in skeletal muscle cells. From the numerical analysis point of view, one faces...

A new model to describe the response of a class of seemingly viscoplastic materials

Sai Manikiran Garimella, Mohan Anand, Kumbakonam R. Rajagopal (2022)

Applications of Mathematics

A new model is proposed to mimic the response of a class of seemingly viscoplastic materials. Using the proposed model, the steady, fully developed flow of the fluid is studied in a cylindrical pipe. The semi-inverse approach is applied to obtain an analytical solution for the velocity profile. The model is used to fit the shear-stress data of several supposedly viscoplastic materials reported in the literature. A numerical procedure is developed to solve the governing ODE and the procedure is validated...

A remark on the local Lipschitz continuity of vector hysteresis operators

Pavel Krejčí (2001)

Applications of Mathematics

It is known that the vector stop operator with a convex closed characteristic Z of class C 1 is locally Lipschitz continuous in the space of absolutely continuous functions if the unit outward normal mapping n is Lipschitz continuous on the boundary Z of Z . We prove that in the regular case, this condition is also necessary.

A variationally consistent generalized variable formulation of the elastoplastic rate problem

Claudia Comi, Umberto Perego (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The elastoplastic rate problem is formulated as an unconstrained saddle point problem which, in turn, is obtained by the Lagrange multiplier method from a kinematic minimum principle. The finite element discretization and the enforcement of the min-max conditions for the Lagrangean function lead to a set of algebraic governing relations (equilibrium, compatibility and constitutive law). It is shown how important properties of the continuum problem (like, e.g., symmetry, convexity, normality) carry...

Abstract quasi-variational inequalities of elliptic type and applications

Yusuke Murase (2009)

Banach Center Publications

A class of quasi-variational inequalities (QVI) of elliptic type is studied in reflexive Banach spaces. The concept of QVI was earlier introduced by A. Bensoussan and J.-L. Lions [2] and its general theory has been developed by many mathematicians, for instance, see [6, 7, 9, 13] and a monograph [1]. In this paper we give a generalization of the existence theorem established in [14]. In our treatment we employ the compactness method along with a concept of convergence of nonlinear multivalued operators...

An extension of small-strain models to the large-strain range based on an additive decomposition of a logarithmic strain

Horák, Martin, Jirásek, Milan (2013)

Programs and Algorithms of Numerical Mathematics

This paper describes model combining elasticity and plasticity coupled to isotropic damage. However, the conventional theory fails after the loss of ellipticity of the governing differential equation. From the numerical point of view, loss of ellipticity is manifested by the pathological dependence of the results on the size and orientation of the finite elements. To avoid this undesired behavior, the model is regularized by an implicit gradient formulation. Finally, the constitutive model is extended...

BV solutions of rate independent differential inclusions

Pavel Krejčí, Vincenzo Recupero (2014)

Mathematica Bohemica

We consider a class of evolution differential inclusions defining the so-called stop operator arising in elastoplasticity, ferromagnetism, and phase transitions. These differential inclusions depend on a constraint which is represented by a convex set that is called the characteristic set. For BV (bounded variation) data we compare different notions of BV solutions and study how the continuity properties of the solution operators are related to the characteristic set. In the finite-dimensional case...

Currently displaying 1 – 20 of 152

Page 1 Next