Displaying 81 – 100 of 152

Showing per page

On linear versus nonlinear flow rules in strain localization analysis

Giorgio Borré, Giulio Maier (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This note contains some remarks on the analysis of bifurcation phenomena, specifically strain localization (onset of a strain rate discontinuity), in small-deformation elastoplasticity. Nonassociative flow rules are allowed for to cover constitutive models frequently adopted for frictional (and softening) materials such as concrete. The conventional derivation of the localization criterion resting on an incrementally linear "comparison material" is critically reviewed and compared to the criterion...

On Lyapunov stability in hypoplasticity

Kovtunenko, Victor A., Krejčí, Pavel, Bauer, Erich, Siváková, Lenka, Zubkova, Anna V. (2017)

Proceedings of Equadiff 14

We investigate the Lyapunov stability implying asymptotic behavior of a nonlinear ODE system describing stress paths for a particular hypoplastic constitutive model of the Kolymbas type under proportional, arbitrarily large monotonic coaxial deformations. The attractive stress path is found analytically, and the asymptotic convergence to the attractor depending on the direction of proportional strain paths and material parameters of the model is proved rigorously with the help of a Lyapunov function....

On periodic homogenization in perfect elasto-plasticity

Gilles A. Francfort, Alessandro Giacomini (2014)

Journal of the European Mathematical Society

The limit behavior of a periodic assembly of a finite number of elasto-plastic phases is investigated as the period becomes vanishingly small. A limit quasi-static evolution is derived through two-scale convergence techniques. It can be thermodynamically viewed as an elasto-plastic model, albeit with an infinite number of internal variables.

On quasistatic inelastic models of gradient type with convex composite constitutive equations

Krzysztof Chełmiński (2003)

Open Mathematics

This article defines and presents the mathematical analysis of a new class of models from the theory of inelastic deformations of metals. This new class, containing so called convex composite models, enlarges the class containing monotone models of gradient type defined in [1]. This paper starts to establish the existence theory for models from this new class; we restrict our investigations to the coercive and linear self-controlling case.

On the accuracy of Reissner–Mindlin plate model for stress boundary conditions

Sheng Zhang (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

For a plate subject to stress boundary condition, the deformation determined by the Reissner–Mindlin plate bending model could be bending dominated, transverse shear dominated, or neither (intermediate), depending on the load. We show that the Reissner–Mindlin model has a wider range of applicability than the Kirchhoff–Love model, but it does not always converge to the elasticity theory. In the case of bending domination, both the two models are accurate. In the case of transverse shear domination, the...

Optimal design of cylindrical shells

Peter Nestler, Werner H. Schmidt (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The present paper studies an optimization problem of dynamically loaded cylindrical tubes. This is a problem of linear elasticity theory. As we search for the optimal thickness of the tube which minimizes the displacement under forces, this is a problem of shape optimization. The mathematical model is given by a differential equation (ODE and PDE, respectively); the mechanical problem is described as an optimal control problem. We consider both the stationary (time independent) and the transient...

Quasilinear hyperbolic equations with hysteresis

Augusto Visintin (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Hysteresis operators are illustrated, and a weak formulation is studied for an initial- and boundary-value problem associated to the equation 2 / t 2 u + F u + A u = f ; here F is a (possibly discontinuous) hysteresis operator, A is a second order elliptic operator, f is a known function. Problems of this sort arise in plasticity, ferromagnetism, ferroelectricity, and so on. In particular an existence result is outlined.

Currently displaying 81 – 100 of 152