Displaying 121 – 140 of 151

Showing per page

Sweeping preconditioners for elastic wave propagation with spectral element methods

Paul Tsuji, Jack Poulson, Björn Engquist, Lexing Ying (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a parallel preconditioning method for the iterative solution of the time-harmonic elastic wave equation which makes use of higher-order spectral elements to reduce pollution error. In particular, the method leverages perfectly matched layer boundary conditions to efficiently approximate the Schur complement matrices of a block LDLT factorization. Both sequential and parallel versions of the algorithm are discussed and results for large-scale problems from exploration geophysics are presented....

Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity

Pavel Krejčí, Jürgen Sprekels (1998)

Applications of Mathematics

In this paper, we develop a thermodynamically consistent description of the uniaxial behavior of thermovisco-elastoplastic materials for which the total stress σ contains, in addition to elastic, viscous and thermic contributions, a plastic component σ p of the form σ p ( x , t ) = 𝒫 [ ε , θ ( x , t ) ] ( x , t ) . Here ε and θ are the fields of strain and absolute temperature, respectively, and { 𝒫 [ · , θ ] } θ > 0 denotes a family of (rate-independent) hysteresis operators of Prandtl-Ishlinskii type, parametrized by the absolute temperature. The system of momentum...

The impact of uncertain parameters on ratchetting trends in hypoplasticity

Chleboun, Jan, Runcziková, Judita, Krejčí, Pavel (2023)

Programs and Algorithms of Numerical Mathematics

Perturbed parameters are considered in a hypoplastic model of granular materials. For fixed parameters, the model response to a periodic stress loading and unloading converges to a limit state of strain. The focus of this contribution is the assessment of the change in the limit strain caused by varying model parameters.

The relaxation of the Signorini problem for polyconvex functionals with linear growth at infinity

Jarosław L. Bojarski (2005)

Applicationes Mathematicae

The aim of this paper is to study the unilateral contact condition (Signorini problem) for polyconvex functionals with linear growth at infinity. We find the lower semicontinuous relaxation of the original functional (defined over a subset of the space of bounded variations BV(Ω)) and we prove the existence theorem. Moreover, we discuss the Winkler unilateral contact condition. As an application, we show a few examples of elastic-plastic potentials for finite displacements.

Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion

Sören Bartels, Tomáš Roubíček (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a viscoelastic solid in Kelvin-Voigt rheology exhibiting also plasticity with hardening and coupled with heat-transfer through dissipative heat production by viscoplastic effects and through thermal expansion and corresponding adiabatic effects. Numerical discretization of the thermodynamically consistent model is proposed by implicit time discretization, suitable regularization, and finite elements in space. Fine a-priori estimates are derived, and convergence is proved by careful successive...

Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion*

Sören Bartels, Tomáš Roubíček (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a viscoelastic solid in Kelvin-Voigt rheology exhibiting also plasticity with hardening and coupled with heat-transfer through dissipative heat production by viscoplastic effects and through thermal expansion and corresponding adiabatic effects. Numerical discretization of the thermodynamically consistent model is proposed by implicit time discretization, suitable regularization, and finite elements in space. Fine a-priori estimates are derived, and convergence is proved by careful...

Two-scale homogenization for a model in strain gradient plasticity

Alessandro Giacomini, Alessandro Musesti (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids 52 (2004) 1855–1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.

Two-scale homogenization for a model in strain gradient plasticity

Alessandro Giacomini, Alessandro Musesti (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids52 (2004) 1855–1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.

Uncertain input data problems and the worst scenario method

Ivan Hlaváček (2007)

Applications of Mathematics

An introduction to the worst scenario method is given. We start with an example and a general abstract scheme. An analysis of the method both on the continuous and approximate levels is discussed. We show a possible incorporation of the method into the fuzzy set theory. Finally, we present a survey of applications published during the last decade.

Variational inequalities in plasticity with strain-hardening - equilibrium finite element approach

Zdeněk Kestřánek (1986)

Aplikace matematiky

The incremental finite element method is applied to find the numerical solution of the plasticity problem with strain-hardening. Following Watwood and Hartz, the stress field is approximated by equilibrium triangular elements with linear functions. The field of the strain-hardening parameter is considered to be piecewise linear. The resulting nonlinear optimization problem with constraints is solved by the Lagrange multipliers method with additional variables. A comparison of the results obtained...

Well-posedness of a thermo-mechanical model for shape memory alloys under tension

Pavel Krejčí, Ulisse Stefanelli (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a model of the full thermo-mechanical evolution of a shape memory body undergoing a uniaxial tensile stress. The well-posedness of the related quasi-static thermo-inelastic problem is addressed by means of hysteresis operators techniques. As a by-product, details on a time-discretization of the problem are provided.

Currently displaying 121 – 140 of 151