Page 1

Displaying 1 – 2 of 2

Showing per page

Non-smoothness in the asymptotics of thin shells and propagation of singularities. Hyperbolic case

Philippe Karamian, Jacqueline Sanchez-Hubert, Évariste Sanchez Palencia (2002)

International Journal of Applied Mathematics and Computer Science

We consider the limit behaviour of elastic shells when the relative thickness tends to zero. We address the case when the middle surface has principal curvatures of opposite signs and the boundary conditions ensure the geometrical rigidity. The limit problem is hyperbolic, but enjoys peculiarities which imply singularities of unusual intensity. We study these singularities and their propagation for several cases of loading, giving a somewhat complete description of the solution.

Numerical study of acoustic multiperforated plates

Abderrahmane Bendali, M’Barek Fares, Sophie Laurens, Sébastien Tordeux (2012)

ESAIM: Proceedings

It is rather classical to model multiperforated plates by approximate impedance boundary conditions. In this article we would like to compare an instance of such boundary conditions obtained through a matched asymptotic expansions technique to direct numerical computations based on a boundary element formulation in the case of linear acoustic.

Currently displaying 1 – 2 of 2

Page 1