Page 1

Displaying 1 – 3 of 3

Showing per page

Equi-integrability results for 3D-2D dimension reduction problems

Marian Bocea, Irene Fonseca (2002)

ESAIM: Control, Optimisation and Calculus of Variations

3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients α u ε | 1 ε 3 u ε bounded in L p ( Ω ; 9 ) , 1 < p < + . Here it is shown that, up to a subsequence, u ε may be decomposed as w ε + z ε , where z ε carries all the concentration effects, i.e. α w ε | 1 ε 3 w ε p is equi-integrable, and w ε captures the oscillatory behavior, i.e. z ε 0 in measure. In addition, if { u ε } is a recovering sequence then z ε = z ε ( x α ) nearby Ω .

Equi-integrability results for 3D-2D dimension reduction problems

Marian Bocea, Irene Fonseca (2010)

ESAIM: Control, Optimisation and Calculus of Variations

3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients α u ε | 1 ε 3 u ε bounded in L p ( Ω ; 9 ) , 1 < p < + . Here it is shown that, up to a subsequence, u ε may be decomposed as w ε + z ε , where z ε carries all the concentration effects, i.e. α w ε | 1 ε 3 w ε p is equi-integrable, and w ε captures the oscillatory behavior, i.e. z ε 0 in measure. In addition, if { u ε } is a recovering sequence then z ε = z ε ( x α ) nearby Ω .

Currently displaying 1 – 3 of 3

Page 1