The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 3 of 3

Showing per page

Linear convergence in the approximation of rank-one convex envelopes

Sören Bartels (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A linearly convergent iterative algorithm that approximates the rank-1 convex envelope f r c of a given function f : n × m , i.e. the largest function below f which is convex along all rank-1 lines, is established. The proposed algorithm is a modified version of an approximation scheme due to Dolzmann and Walkington.

Linear convergence in the approximation of rank-one convex envelopes

Sören Bartels (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A linearly convergent iterative algorithm that approximates the rank-1 convex envelope  f r c of a given function f : n × m , i.e. the largest function below f which is convex along all rank-1 lines, is established. The proposed algorithm is a modified version of an approximation scheme due to Dolzmann and Walkington.

Locking free matching of different three dimensional models in structural mechanics

Patrick Le Tallec, Saloua Mani Aouadi (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

The present paper proposes and analyzes a general locking free mixed strategy for computing the deformation of incompressible three dimensional structures placed inside flexible membranes. The model involves as in Chapelle and Ferent [Math. Models Methods Appl. Sci.13 (2003) 573–595] a bending dominated shell envelope and a quasi incompressible elastic body. The present work extends an earlier work of Arnold and Brezzi [Math Comp.66 (1997) 1–14] treating the shell part and proposes a global...

Currently displaying 1 – 3 of 3

Page 1