Page 1

Displaying 1 – 7 of 7

Showing per page

A comparison of solvers for linear complementarity problems arising from large-scale masonry structures

Mark Ainsworth, L. Angela Mihai (2006)

Applications of Mathematics

We compare the numerical performance of several methods for solving the discrete contact problem arising from the finite element discretisation of elastic systems with numerous contact points. The problem is formulated as a variational inequality and discretised using piecewise quadratic finite elements on a triangulation of the domain. At the discrete level, the variational inequality is reformulated as a classical linear complementarity system. We compare several state-of-art algorithms that have...

Adaptive multiscale scheme based on numerical density of entropy production for conservation laws

Mehmet Ersoy, Frédéric Golay, Lyudmyla Yushchenko (2013)

Open Mathematics

We propose a 1D adaptive numerical scheme for hyperbolic conservation laws based on the numerical density of entropy production (the amount of violation of the theoretical entropy inequality). This density is used as an a posteriori error which provides information if the mesh should be refined in the regions where discontinuities occur or coarsened in the regions where the solution remains smooth. As due to the Courant-Friedrich-Levy stability condition the time step is restricted and leads to...

Air entrainment in transient flows in closed water pipes : A two-layer approach

C. Bourdarias, M. Ersoy, Stéphane Gerbi (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we first construct a model for free surface flows that takes into account the air entrainment by a system of four partial differential equations. We derive it by taking averaged values of gas and fluid velocities on the cross surface flow in the Euler equations (incompressible for the fluid and compressible for the gas). The obtained system is conditionally hyperbolic. Then, we propose a mathematical kinetic interpretation of this system to finally construct a two-layer kinetic scheme...

An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment

François Bouchut, Tomás Morales de Luna (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the system of partial differential equations governing the one-dimensional flow of two superposed immiscible layers of shallow water. The difficulty in this system comes from the coupling terms involving some derivatives of the unknowns that make the system nonconservative, and eventually nonhyperbolic. Due to these terms, a numerical scheme obtained by performing an arbitrary scheme to each layer, and using time-splitting or other similar techniques leads to instabilities in...

Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics

Xavier Blanc, Claude Le Bris, Frédéric Legoll (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In order to describe a solid which deforms smoothly in some region, but non smoothly in some other region, many multiscale methods have recently been proposed. They aim at coupling an atomistic model (discrete mechanics) with a macroscopic model (continuum mechanics). We provide here a theoretical ground for such a coupling in a one-dimensional setting. We briefly study the general case of a convex energy, and next concentrate on a specific example of a nonconvex energy, the Lennard-Jones case....

Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics

Xavier Blanc, Claude Le Bris, Frédéric Legoll (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In order to describe a solid which deforms smoothly in some region, but non smoothly in some other region, many multiscale methods have recently been proposed. They aim at coupling an atomistic model (discrete mechanics) with a macroscopic model (continuum mechanics). We provide here a theoretical ground for such a coupling in a one-dimensional setting. We briefly study the general case of a convex energy, and next concentrate on a specific example of a nonconvex energy, the Lennard-Jones case....

Currently displaying 1 – 7 of 7

Page 1