The search session has expired. Please query the service again.
The aim of this paper is to develop a finite element method which allows computing
the buckling coefficients and modes of a non-homogeneous Timoshenko beam.
Studying the spectral properties of a non-compact operator,
we show that the relevant buckling coefficients correspond to isolated
eigenvalues of finite multiplicity.
Optimal order error estimates are proved for the eigenfunctions
as well as a double order of convergence for
the eigenvalues using classical abstract spectral approximation theory...
The aim of this paper is to develop a finite element method which allows computing
the buckling coefficients and modes of a non-homogeneous Timoshenko beam.
Studying the spectral properties of a non-compact operator,
we show that the relevant buckling coefficients correspond to isolated
eigenvalues of finite multiplicity.
Optimal order error estimates are proved for the eigenfunctions
as well as a double order of convergence for
the eigenvalues using classical abstract spectral approximation theory...
The author introduces a global measure of initial deflection given by the energy norm. Solving the formulated minimization problem with a subsidiary condition the most dangerous initial deflection shape is obtained. The theoretical results include a wide range of stability type structural problems.
A unilateral boundary-value condition at the left end of a simply supported rod is considered. Variational and (equivalent) classical formulations are introduced and all solutions to the classical problem are calculated in an explicit form. Formulas for the energies corresponding to the solutions are also given. The problem is solved and energies of the solutions are compared in the pertubed as well as the unperturbed cases.
Currently displaying 1 –
6 of
6