The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we deal with the energy functionals for the elastic thin film ω ⊂ ℝ² involving the bending moments. The effective energy functional is obtained by Γ-convergence and 3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film energy functional. These results are proved in the case when the energy density function has the growth prescribed by an Orlicz convex function M. Here M is assumed to be non-power-growth-type and to satisfy the conditions Δ₂ and...
In this paper we consider an elastic thin film ω ⊂ ℝ² with the bending moment depending also on the third thickness variable. The effective energy functional defined on the Orlicz-Sobolev space over ω is described by Γ-convergence and 3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film energy functional. These results are proved in the case when the energy density function has the growth prescribed by an Orlicz convex function M. Here M is assumed to be non-power-growth-type...
3D-2D asymptotic analysis for thin structures rests on the mastery of scaled gradients bounded in Here it is shown that, up to a subsequence, may be decomposed as where carries all the concentration effects, i.e. is equi-integrable, and captures the oscillatory behavior, i.e. in measure. In addition, if is a recovering sequence then nearby
3D-2D asymptotic analysis for thin structures rests on the mastery
of scaled gradients bounded in Here it is shown that, up to a
subsequence, may be decomposed as
where carries all the concentration effects, i.e. is
equi-integrable, and captures the oscillatory behavior,
i.e. in measure. In addition, if is
a recovering sequence then nearby
The free motion of a thin elastic linear membrane is described, in a simplyfied model, by a second order linear homogeneous hyperbolic system of partial differential equations whose spatial part is the Laplace Beltrami operator acting on a Riemannian 2-dimensional manifold with boundary. We adapt the estimates of the spectrum of the Laplacian obtained in the last years by several authors for compact closed Riemannian manifolds. To make so, we use the standard technique of the doubled manifold to...
This paper is devoted to Eulerian models for incompressible fluid-structure systems. These models are primarily derived for computational purposes as they allow to simulate in a rather straightforward way complex 3D systems. We first analyze the level set model of immersed membranes proposed in [Cottet and Maitre, Math. Models Methods Appl. Sci.16 (2006) 415–438]. We in particular show that this model can be interpreted as a generalization of so-called Korteweg fluids. We then extend this model...
We consider the problem of boundary control of an elastic system with coupling to a potential equation. The potential equation represents the linearized motions of an incompressible inviscid fluid in a cavity bounded in part by an elastic membrane. Sufficient control is placed on a portion of the elastic membrane to insure that the uncoupled membrane is exactly controllable. The main result is that if the density of the fluid is sufficiently small, then the coupled system is exactly controllable....
A justification of the two-dimensional nonlinear “membrane”
equations for a plate made of a Saint Venant-Kirchhoff material has
been given by Fox et al. [9] by means of the method of formal
asymptotic expansions applied to the three-dimensional equations of
nonlinear elasticity. This model, which retains the material-frame
indifference of the original
three dimensional problem in the sense that its energy density is
invariant under the rotations of , is equivalent to finding the
critical points...
Currently displaying 1 –
15 of
15