Displaying 241 – 260 of 684

Showing per page

Global well-posedness and blow up for the nonlinear fractional beam equations

Shouquan Ma, Guixiang Xu (2010)

Applicationes Mathematicae

We establish the Strichartz estimates for the linear fractional beam equations in Besov spaces. Using these estimates, we obtain global well-posedness for the subcritical and critical defocusing fractional beam equations. Of course, we need to assume small initial data for the critical case. In addition, by the convexity method, we show that blow up occurs for the focusing fractional beam equations with negative energy.

h p -FEM for three-dimensional elastic plates

Monique Dauge, Christoph Schwab (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work, we analyze hierarchic h p -finite element discretizations of the full, three-dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional solution, we give specific mesh design principles for the h p -FEM which allow to resolve the three-dimensional boundary layer profiles at robust, exponential rate. We prove that, as the plate half-thickness ε tends to zero, the h p -discretization is consistent with the three-dimensional solution to any power of ε in the energy...

Homogenization of quasilinear optimal control problems involving a thick multilevel junction of type 3 : 2 : 1

Tiziana Durante, Taras A. Mel’nyk (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider quasilinear optimal control problems involving a thick two-level junction Ωε which consists of the junction body Ω0 and a large number of thin cylinders with the cross-section of order 𝒪(ε2). The thin cylinders are divided into two levels depending on the geometrical characteristics, the quasilinear boundary conditions and controls given on their lateral surfaces and bases respectively. In addition, the quasilinear boundary conditions depend on parameters ε, α, β and the...

Homogenization of quasilinear optimal control problems involving a thick multilevel junction of type 3 : 2 : 1∗

Tiziana Durante, Taras A. Mel’nyk (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider quasilinear optimal control problems involving a thick two-level junction Ωε which consists of the junction body Ω0 and a large number of thin cylinders with the cross-section of order 𝒪(ε2). The thin cylinders are divided into two levels depending on the geometrical characteristics, the quasilinear boundary conditions and controls given on their lateral surfaces and bases respectively. In addition, the quasilinear boundary...

Homogenization of quasilinear optimal control problems involving a thick multilevel junction of type 3 : 2 : 1∗

Tiziana Durante, Taras A. Mel’nyk (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider quasilinear optimal control problems involving a thick two-level junction Ωε which consists of the junction body Ω0 and a large number of thin cylinders with the cross-section of order 𝒪(ε2). The thin cylinders are divided into two levels depending on the geometrical characteristics, the quasilinear boundary conditions and controls given on their lateral surfaces and bases respectively. In addition, the quasilinear boundary...

Homogenization of thin piezoelectric perforated shells

Marius Ghergu, Georges Griso, Houari Mechkour, Bernadette Miara (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We rigorously establish the existence of the limit homogeneous constitutive law of a piezoelectric composite made of periodically perforated microstructures and whose reference configuration is a thin shell with fixed thickness. We deal with an extension of the Koiter shell model in which the three curvilinear coordinates of the elastic displacement field and the electric potential are coupled. By letting the size of the microstructure going to zero and by using the periodic unfolding method combined...

hp-FEM for three-dimensional elastic plates

Monique Dauge, Christoph Schwab (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we analyze hierarchic hp-finite element discretizations of the full, three-dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional solution, we give specific mesh design principles for the hp-FEM which allow to resolve the three-dimensional boundary layer profiles at robust, exponential rate. We prove that, as the plate half-thickness ε tends to zero, the hp-discretization is consistent with the three-dimensional solution to any power of ε in...

Identification problem for nonlinear beam -- extension for different types of boundary conditions

Radová, Jana, Machalová, Jitka (2023)

Programs and Algorithms of Numerical Mathematics

Identification problem is a framework of mathematical problems dealing with the search for optimal values of the unknown coefficients of the considered model. Using experimentally measured data, the aim of this work is to determine the coefficients of the given differential equation. This paper deals with the extension of the continuous dependence results for the Gao beam identification problem with different types of boundary conditions by using appropriate analytical inequalities with a special...

Currently displaying 241 – 260 of 684