Korn's inequalities for junctions of elastic bodies with thin plates.
Theoretical and experimental results concerning the shear-center of a bent beam with variable section are carried out. The matrix methods of structural analysis for the static linear elastic problem is extended; the stiffness and load matrix are formulated starting from the sectorial areas theory in order to interpret the effect of non-uniform torsion. The formulation may be used through the general matrix displacement method of structural analysis.
The limiting behavior of global attractors for singularly perturbed beam equations is investigated. It is shown that for any neighborhood of the set is included in for small.
The subject of this paper is the rigorous derivation of reduced models for a thin plate by means of Γ-convergence, in the framework of finite plasticity. Denoting by ε the thickness of the plate, we analyse the case where the scaling factor of the elasto-plastic energy per unit volume is of order ε2α−2, with α ≥ 3. According to the value of α, partially or fully linearized models are deduced, which correspond, in the absence of plastic deformation, to the Von Kármán plate theory and the linearized...
The Asymptotic Numerical Method (ANM) is a family of algorithms, based on computation of truncated vectorial series, for path following problems [2]. In this paper, we present and discuss some techniques to define local parameterization [4, 6, 7] in the ANM. We give some numerical comparisons of pseudo arc-length parameterization and local parameterization on non-linear elastic shells problems
In this work we study the problem of the existence of bifurcation in the solution set of the equation F(x, λ)=0, where F: X×R k →Y is a C 2-smooth operator, X and Y are Banach spaces such that X⊂Y. Moreover, there is given a scalar product 〈·,·〉: Y×Y→R 1 that is continuous with respect to the norms in X and Y. We show that under some conditions there is bifurcation at a point (0, λ0)∈X×R k and we describe the solution set of the studied equation in a small neighbourhood of this point.
The present paper proposes and analyzes a general locking free mixed strategy for computing the deformation of incompressible three dimensional structures placed inside flexible membranes. The model involves as in Chapelle and Ferent [Math. Models Methods Appl. Sci.13 (2003) 573–595] a bending dominated shell envelope and a quasi incompressible elastic body. The present work extends an earlier work of Arnold and Brezzi [Math Comp.66 (1997) 1–14] treating the shell part and proposes a global...
We are concerned with a transmission problem for the Kirchhoff plate equation where one small part of the domain is made of a viscoelastic material with the Kelvin-Voigt constitutive relation. We obtain the logarithmic stabilization result (explicit energy decay rate), as well as the wellposedness, for the transmission system. The method is based on a new Carleman estimate to obtain information on the resolvent for high frequency. The main ingredient of the proof is some careful analysis for the...
Si dimostra che ci sono valide ragioni per considerare la teoria standard dei vincoli interni, nella meccanica dei continui, insufficientemente generale. In particolare, con l’unica eccezione dell’iperelasticità, l’extra-stress dovrebbe dipendere anche dai moltiplicatori di Lagrange, cioè, dallo stress che non effettua lavoro (virtuale).
The aim of this work is to deduce the existence of solution of a coupled problem arising in elastohydrodynamic lubrication. The lubricant pressure and concentration are modelled by Reynolds equation, jointly with the free-boundary Elrod-Adams model in order to take into account cavitation phenomena. The bearing deformation is solution of Koiter model for thin shells. The existence of solution to the variational problem presents some difficulties: the coupled character of the equations, the nonlinear...
The aim of this work is to deduce the existence of solution of a coupled problem arising in elastohydrodynamic lubrication. The lubricant pressure and concentration are modelled by Reynolds equation, jointly with the free-boundary Elrod-Adams model in order to take into account cavitation phenomena. The bearing deformation is solution of Koiter model for thin shells. The existence of solution to the variational problem presents some difficulties: the coupled character of the equations, the nonlinear...
In this paper, we propose a mathematical model for flow and transport processes of diluted solutions in domains separated by a leaky semipermeable membrane. We formulate transmission conditions for the flow and the solute concentration across the membrane which take into account the property of the membrane to partly reject the solute, the accumulation of rejected solute at the membrane, and the influence of the solute concentration on the volume flow, known as osmotic effect. The model is solved...
A model of a cable stayed bridge is proposed. This model describes the behaviour of the center span, the part between pylons, hung on one row of cable stays. The existence, the uniqueness of a solution of a time independent problem and the continuous dependence on data are proved. The existence and the uniqueness of a solution of a linearized dynamic problem are proved. A homogenizing procedure making it possible to replace cables by a continuous system is proposed. A nonlinear dynamic problem connected...