Previous Page 4

Displaying 61 – 67 of 67

Showing per page

The interface crack with Coulomb friction between two bonded dissimilar elastic media

Hiromichi Itou, Victor A. Kovtunenko, Atusi Tani (2011)

Applications of Mathematics

We study a model of interfacial crack between two bonded dissimilar linearized elastic media. The Coulomb friction law and non-penetration condition are assumed to hold on the whole crack surface. We define a weak formulation of the problem in the primal form and get the equivalent primal-dual formulation. Then we state the existence theorem of the solution. Further, by means of Goursat-Kolosov-Muskhelishvili stress functions we derive convergent expansions of the solution near the crack tip.

The weak solution of an antiplane contact problem for electro-viscoelastic materials with long-term memory

Ammar Derbazi, Mohamed Dalah, Amar Megrous (2016)

Applications of Mathematics

We study a mathematical model which describes the antiplane shear deformation of a cylinder in frictionless contact with a rigid foundation. The material is assumed to be electro-viscoelastic with long-term memory, and the friction is modeled with Tresca's law and the foundation is assumed to be electrically conductive. First we derive the classical variational formulation of the model which is given by a system coupling an evolutionary variational equality for the displacement field with a time-dependent...

Theoretical analysis of discrete contact problems with Coulomb friction

Tomáš Ligurský (2012)

Applications of Mathematics

A discrete model of the two-dimensional Signorini problem with Coulomb friction and a coefficient of friction depending on the spatial variable is analysed. It is shown that a solution exists for any and is globally unique if is sufficiently small. The Lipschitz continuity of this unique solution as a function of as well as a function of the load vector f is obtained. Furthermore, local uniqueness of solutions for arbitrary > 0 is studied. The question of existence of locally Lipschitz-continuous...

Topology optimization of quasistatic contact problems

Andrzej Myśliński (2012)

International Journal of Applied Mathematics and Computer Science

This paper deals with the formulation of a necessary optimality condition for a topology optimization problem for an elastic contact problem with Tresca friction. In the paper a quasistatic contact model is considered, rather than a stationary one used in the literature. The functional approximating the normal contact stress is chosen as the shape functional. The aim of the topology optimization problem considered is to find the optimal material distribution inside a design domain occupied by the...

Weak Formulations and Solution Multiplicity of Equilibrium Configurations with Coulomb Friction

M. Bostan, P. Hild (2009)

Mathematical Modelling of Natural Phenomena

This work is concerned with the equilibrium configurations of elastic structures in contact with Coulomb friction. We obtain a variational formulation of this equilibrium problem. Then we propose sufficient conditions for the existence of an infinity of equilibrium configurations with arbitrary small friction coefficients. We illustrate the result in two space dimensions with a simple example.

Weak solvability and numerical analysis of a class of time-fractional hemivariational inequalities with application to frictional contact problems

Mustapha Bouallala (2024)

Applications of Mathematics

We investigate a generalized class of fractional hemivariational inequalities involving the time-fractional aspect. The existence result is established by employing the Rothe method in conjunction with the surjectivity of multivalued pseudomonotone operators and the properties of the Clarke generalized gradient. We are also exploring a numerical approach to address the problem, utilizing both spatially semi-discrete and fully discrete finite elements, along with a discrete approximation of the fractional...

Currently displaying 61 – 67 of 67

Previous Page 4