Displaying 41 – 60 of 324

Showing per page

A unilateral contact problem with slip-dependent friction

Arezki Touzaline (2016)

Applicationes Mathematicae

We consider a mathematical model which describes a static contact between a nonlinear elastic body and an obstacle. The contact is modelled with Signorini's conditions, associated with a slip-dependent version of Coulomb's nonlocal friction law. We derive a variational formulation and prove its unique weak solvability. We also study the finite element approximation of the problem and obtain an optimal error estimate under extra regularity for the solution. Finally, we establish the convergence of...

A variational problem modelling behavior of unorthodox silicon crystals

J. Hannon, M. Marcus, Victor J. Mizel (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Controlling growth at crystalline surfaces requires a detailed and quantitative understanding of the thermodynamic and kinetic parameters governing mass transport. Many of these parameters can be determined by analyzing the isothermal wandering of steps at a vicinal [“step-terrace”] type surface [for a recent review see [4]]. In the case of o r t h o d o x crystals one finds that these meanderings develop larger amplitudes as the equilibrium temperature is raised (as is consistent with the statistical mechanical...

A Variational Problem Modelling Behavior of Unorthodox Silicon Crystals

J. Hannon, M. Marcus, Victor J. Mizel (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Controlling growth at crystalline surfaces requires a detailed and quantitative understanding of the thermodynamic and kinetic parameters governing mass transport. Many of these parameters can be determined by analyzing the isothermal wandering of steps at a vicinal [“step-terrace”] type surface [for a recent review see [4]]. In the case of orthodox crystals one finds that these meanderings develop larger amplitudes as the equilibrium temperature is raised (as is consistent with the statistical...

A verified method for solving piecewise smooth initial value problems

Ekaterina Auer, Stefan Kiel, Andreas Rauh (2013)

International Journal of Applied Mathematics and Computer Science

In many applications, there is a need to choose mathematical models that depend on non-smooth functions. The task of simulation becomes especially difficult if such functions appear on the right-hand side of an initial value problem. Moreover, solution processes from usual numerics are sensitive to roundoff errors so that verified analysis might be more useful if a guarantee of correctness is required or if the system model is influenced by uncertainty. In this paper, we provide a short overview...

A viscoelastic contact problem with normal damped response and friction

B. Awbi, El H. Essoufi, M. Sofonea (2000)

Annales Polonici Mathematici

We study an evolution problem which describes the quasistatic contact of a viscoelastic body with a foundation. We model the contact with normal damped response and a local friction law. We derive a variational formulation of the model and we establish the existence of a unique weak solution to the problem. The proof is based on monotone operators and fixed point arguments. We also establish the continuous dependence of the solution on the contact boundary conditions.

A Viscoelastic Frictionless Contact Problem with Adhesion

Arezki Touzaline (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

We consider a mathematical model which describes the equilibrium between a viscoelastic body in frictionless contact with an obstacle. The contact is modelled with normal compliance, associated with Signorini's conditions and adhesion. The adhesion is modelled with a surface variable, the bonding field, whose evolution is described by a first-order differential equation. We establish a variational formulation of the mechanical problem and prove the existence and uniqueness of the weak solution....

An adaptive finite element method for solving a double well problem describing crystalline microstructure

Andreas Prohl (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The minimization of nonconvex functionals naturally arises in materials sciences where deformation gradients in certain alloys exhibit microstructures. For example, minimizing sequences of the nonconvex Ericksen-James energy can be associated with deformations in martensitic materials that are observed in experiments[2,3]. — From the numerical point of view, classical conforming and nonconforming finite element discretizations have been observed to give minimizers with their quality being highly dependent...

An elastic membrane with an attached non-linear thermoelastic rod

Werner Horn, Jan Sokołowski (2002)

International Journal of Applied Mathematics and Computer Science

We study a thermo-mechanical system consisting of an elastic membrane to which a shape-memory rod is glued. The slow movements of the membrane are controlled by the motions of the attached rods. A quasi-static model is used. We include the elastic feedback of the membrane on the rods. This results in investigating an elliptic boundary value problem in a domain Ω ⊂ R^2 with a cut, coupled with non-linear equations for the vertical motions of the rod and the temperature on the rod. We prove the existence...

An elementary theory of the oblique impact of rods

Robin J. Knops, Piero Villaggio (2001)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

An extension is proposed of a classical approximate method for estimating the stress state in an elastic rod obliquely colliding against a rigid wall.

An optimal algorithm with Barzilai-Borwein steplength and superrelaxation for QPQC problem

Pospíšil, Lukáš (2013)

Programs and Algorithms of Numerical Mathematics

We propose a modification of MPGP algorithm for solving minimizing problem of strictly convex quadratic function subject to separable spherical constraints. This active set based algorithm explores the faces by the conjugate gradients and changes the active sets and active variables by the gradient projection with the Barzilai-Borwein steplength. We show how to use the algorithm for the solution of separable and equality constraints. The power of our modification is demonstrated on the solution...

Analysis and numerical approximation of an elastic frictional contact problem with normal compliance

Weimin Han, Mircea Sofonea (1999)

Applicationes Mathematicae

We consider the problem of frictional contact between an elastic body and an obstacle. The elastic constitutive law is assumed to be nonlinear. The contact is modeled with normal compliance and the associated version of Coulomb's law of dry friction. We present two alternative yet equivalent weak formulations of the problem, and establish existence and uniqueness results for both formulations using arguments of elliptic variational inequalities and fixed point theory. Moreover, we show the continuous...

Analysis and Numerical Approximation of an Electro-elastic Frictional Contact Problem

El. Essoufi, El. Benkhira, R. Fakhar (2010)

Mathematical Modelling of Natural Phenomena

We consider the problem of frictional contact between an piezoelectric body and a conductive foundation. The electro-elastic constitutive law is assumed to be nonlinear and the contact is modelled with the Signorini condition, nonlocal Coulomb friction law and a regularized electrical conductivity condition. The existence of a unique weak solution of the model is established. The finite elements approximation for the problem is presented, and error...

Analysis of a contact adhesive problem with normal compliance and nonlocal friction

Arezki Touzaline (2012)

Annales Polonici Mathematici

The paper deals with the problem of a quasistatic frictional contact between a nonlinear elastic body and a deformable foundation. The contact is modelled by a normal compliance condition in such a way that the penetration is restricted with a unilateral constraint and associated to the nonlocal friction law with adhesion. The evolution of the bonding field is described by a first-order differential equation. We establish a variational formulation of the mechanical problem and prove an existence...

Analysis of a discrete model for the contact problem between a membrane and an elastic obstacle

Aldo Maceri, Franco Maceri (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questo lavoro viene risolto il problema del contatto tra una membrana ed un suolo od ostacolo elastico con una approssimazione lineare a tratti della soluzione. Sono date alcune formulazioni equivalenti del problema discreto e se ne discutono le corrispondenti proprietà computazionali.

Analysis of a frictionless contact problem for elastic bodies

S. Drabla, M. Sofonea, B. Teniou (1998)

Annales Polonici Mathematici

This paper deals with a nonlinear problem modelling the contact between an elastic body and a rigid foundation. The elastic constitutive law is assumed to be nonlinear and the contact is modelled by the well-known Signorini conditions. Two weak formulations of the model are presented and existence and uniqueness results are established using classical arguments of elliptic variational inequalities. Some equivalence results are presented and a strong convergence result involving a penalized problem...

Currently displaying 41 – 60 of 324