Displaying 61 – 80 of 324

Showing per page

Analysis of a viscoelastic antiplane contact problem with slip-dependent friction

Thierry-Vincent Hoarau-Mantel, Andaluzia Matei (2002)

International Journal of Applied Mathematics and Computer Science

We study a mathematical problem modelling the antiplane shear deformation of a viscoelastic body in frictional contact with a rigid foundation. The contact is bilateral and is modelled with a slip-dependent friction law. We present the classical formulation for the antiplane problem and write the corresponding variational formulation. Then we establish the existence of a unique weak solution to the model, by using the Banach fixed-point theorem and classical results for elliptic variational inequalities....

Analytical results on a model for damaging in domains and interfaces

Elena Bonetti, Michel Frémond (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with a model describing damage processes in a (nonlinear) elastic body which is in contact with adhesion with a rigid support. On the basis of phase transitions theory, we detail the derivation of the model written in terms of a PDE system, combined with suitable initial and boundary conditions. Some internal constraints on the variables are introduced in the equations and on the boundary, to get physical consistency. We prove the existence of global in time solutions (to a suitable...

Analytical results on a model for damaging in domains and interfaces*

Elena Bonetti, Michel Frémond (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with a model describing damage processes in a (nonlinear) elastic body which is in contact with adhesion with a rigid support. On the basis of phase transitions theory, we detail the derivation of the model written in terms of a PDE system, combined with suitable initial and boundary conditions. Some internal constraints on the variables are introduced in the equations and on the boundary, to get physical consistency. We prove the existence of global in time solutions (to a suitable...

Approximation and numerical realization of 3D contact problems with given friction and a coefficient of friction depending on the solution

Jaroslav Haslinger, Tomáš Ligurský (2009)

Applications of Mathematics

The paper presents the analysis, approximation and numerical realization of 3D contact problems for an elastic body unilaterally supported by a rigid half space taking into account friction on the common surface. Friction obeys the simplest Tresca model (a slip bound is given a priori) but with a coefficient of friction which depends on a solution. It is shown that a solution exists for a large class of and is unique provided that is Lipschitz continuous with a sufficiently small modulus of...

Approximation and numerical solution of contact problems with friction

Jaroslav Haslinger, Miroslav Tvrdý (1983)

Aplikace matematiky

The present paper deals with numerical solution of the contact problem with given friction. By a suitable choice of multipliers the whole problem is transformed to that of finding a saddle-point of the Lagrangian function on a certain convex set K × Λ . The approximation of this saddle-point is defined, the convergence is proved and the rate of convergence established. For the numerical realization Uzawa’s algorithm is used. Some examples are given in the conclusion.

Asymptotic analysis and control of a hybrid system composed by two vibrating strings connected by a point mass

C. Castro (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a hybrid, one-dimensional, linear system consisting in two flexible strings connected by a point mass. It is known that this system presents two interesting features. First, it is well posed in an asymmetric space in which solutions have one more degree of regularity to one side of the point mass. Second, that the spectral gap vanishes asymptotically. We prove that the first property is a consequence of the second one. We also consider a system in which the point mass is replaced...

Asymptotic Analysis of the Shape and Composition of Alloy Islands in Epitaxial Solid Films

M. Blanariu, B. J. Spencer (2008)

Mathematical Modelling of Natural Phenomena

We consider the formation of solid drops (“islands”) occurring in the growth of strained solid films. Beginning from a detailed model for the growth of an alloy film that incorporates the coupling between composition, elastic stress and the morphology of the free boundary, we develop an asymptotic description of the shape and compositional nonuniformity of small alloy islands grown at small deposition rates. A key feature of the analysis is a “thin domain” scaling in the island which enables recasting...

Boundary controllability of the finite-difference space semi-discretizations of the beam equation

Liliana León, Enrique Zuazua (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We propose a finite difference semi-discrete scheme for the approximation of the boundary exact controllability problem of the 1-D beam equation modelling the transversal vibrations of a beam with fixed ends. First of all we show that, due to the high frequency spurious oscillations, the uniform (with respect to the mesh-size) controllability property of the semi-discrete model fails in the natural functional setting. We then prove that there are two ways of restoring the uniform controllability...

Boundary controllability of the finite-difference space semi-discretizations of the beam equation

Liliana León, Enrique Zuazua (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We propose a finite difference semi-discrete scheme for the approximation of the boundary exact controllability problem of the 1-D beam equation modelling the transversal vibrations of a beam with fixed ends. First of all we show that, due to the high frequency spurious oscillations, the uniform (with respect to the mesh-size) controllability property of the semi-discrete model fails in the natural functional setting. We then prove that there are two ways of restoring the uniform controllability...

Boundary feedback stabilization of a three-layer sandwich beam : Riesz basis approach

Jun-Min Wang, Bao-Zhu Guo, Boumediène Chentouf (2006)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the boundary stabilization of a sandwich beam which consists of two outer stiff layers and a compliant middle layer. Using Riesz basis approach, we show that there is a sequence of generalized eigenfunctions, which forms a Riesz basis in the state space. As a consequence, the spectrum-determined growth condition as well as the exponential stability of the closed-loop system are concluded. Finally, the well-posedness and regularity in the sense of Salamon-Weiss class as...

Boundary feedback stabilization of a three-layer sandwich beam: Riesz basis approach

Jun-Min Wang, Bao-Zhu Guo, Boumediène Chentouf (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the boundary stabilization of a sandwich beam which consists of two outer stiff layers and a compliant middle layer. Using Riesz basis approach, we show that there is a sequence of generalized eigenfunctions, which forms a Riesz basis in the state space. As a consequence, the spectrum-determined growth condition as well as the exponential stability of the closed-loop system are concluded. Finally, the well-posedness and regularity in the sense of Salamon-Weiss class as...

Currently displaying 61 – 80 of 324