Existence of periodic traveling wave solutions to the generalized forced Boussinesq equation.
The existence of global solutions and the phenomenon of blow-up of a solution in finite time for a recently derived shallow water equation are studied. We prove that the only way a classical solution could blow-up is as a breaking wave for which we determine the exact blow-up rate and, in some cases, the blow-up set. Using the correspondence between the shallow water equation and the geodesic flow on the manifold of diffeomorphisms of the line endowed with a weak Riemannian structure, we give sufficient...
In this paper one considers the linearized problem to determine the movement of an ideal heavy fluid contained in an unbounded container withelastic walls. As initial data one knows the movement of both the bottom and the free surface of the fluid and also the strength of certain perturbation, strong enough to take the bottom out of its rest state.One important point to be considered regards the influence of the bottom’s geometry on the propagation of superficial waves. This problem has been already...
We focus here on the water waves problem for uneven bottoms in the long-wave regime, on an unbounded two or three-dimensional domain. In order to derive asymptotic models for this problem, we consider two different regimes of bottom topography, one for small variations in amplitude, and one for strong variations. Starting from the Zakharov formulation of this problem, we rigorously compute the asymptotic expansion of the involved Dirichlet-Neumann operator. Then, following the global strategy...
In this work we study the generalized Boussinesq equation with a dissipation term. We show that, under suitable conditions, a global solution for the initial value problem exists. In addition, we derive sufficient conditions for the blow-up of the solution to the problem. Furthermore, the instability of the stationary solutions of this equation is established.
The purpose of this paper is to apply particle methods to the numerical solution of the EPDiff equation. The weak solutions of EPDiff are contact discontinuities that carry momentum so that wavefront interactions represent collisions in which momentum is exchanged. This behavior allows for the description of many rich physical applications, but also introduces difficult numerical challenges. We present a particle method for the EPDiff equation that is well-suited for this class of solutions and...
The purpose of this paper is to apply particle methods to the numerical solution of the EPDiff equation. The weak solutions of EPDiff are contact discontinuities that carry momentum so that wavefront interactions represent collisions in which momentum is exchanged. This behavior allows for the description of many rich physical applications, but also introduces difficult numerical challenges. We present a particle method for the EPDiff equation that...
The free oscillations of the gate system proposed [1,2] to defend the Venice Lagoon from the phenomenon of high water are analyzed. Free transverse modes of oscillations exist which may be either subharmonic or synchronous with respect to typical waves in the Adriatic sea. This result points out the need to examine whether such modes may be excited as a result of a Mathieu type resonance occurring when the gate system is forced by incident waves. The latter investigation is performed in part 2 of...
We show that the transverse subharmonic modes characterizing the free oscillations of the gate system proposed to defend the Venice Lagoon from the phenomenon of high water (see Note I[1]) can be excited when the gate system is forced by plane monochromatic waves orthogonal to the gates with the typical characteristics of large amplitude waves in the Adriatic sea close to the lagoon inlets. A linear stability analysis of the coupled motion of the system sea-gates-lagoon reveals that for typical...