The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider a special configuration of vorticity that consists of a pair of
externally tangent circular vortex sheets, each having a circularly symmetric core
of bounded vorticity concentric to the sheet, and each core precisely balancing the
vorticity mass of the sheet. This configuration is a stationary weak solution of the
2D incompressible Euler equations. We propose to perform numerical experiments to verify
that certain approximations of this flow configuration converge to a non-stationary...
Currently displaying 1 –
4 of
4