Page 1

Displaying 1 – 4 of 4

Showing per page

Numerical methods for fourth order nonlinear degenerate diffusion problems

Jürgen Becker, Günther Grün, Martin Lenz, Martin Rumpf (2002)

Applications of Mathematics

Numerical schemes are presented for a class of fourth order diffusion problems. These problems arise in lubrication theory for thin films of viscous fluids on surfaces. The equations being in general fourth order degenerate parabolic, additional singular terms of second order may occur to model effects of gravity, molecular interactions or thermocapillarity. Furthermore, we incorporate nonlinear surface tension terms. Finally, in the case of a thin film flow driven by a surface active agent (surfactant),...

Numerical simulation of gluey particles

Aline Lefebvre (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose here a model and a numerical scheme to compute the motion of rigid particles interacting through the lubrication force. In the case of a particle approaching a plane, we propose an algorithm and prove its convergence towards the solutions to the gluey particle model described in [B. Maury, ESAIM: Proceedings 18 (2007) 133–142]. We propose a multi-particle version of this gluey model which is based on the projection of the velocities onto a set of admissible velocities. Then, we describe...

Numerical simulation of gluey particles

Aline Lefebvre (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose here a model and a numerical scheme to compute the motion of rigid particles interacting through the lubrication force. In the case of a particle approaching a plane, we propose an algorithm and prove its convergence towards the solutions to the gluey particle model described in [B. Maury, ESAIM: Proceedings18 (2007) 133–142]. We propose a multi-particle version of this gluey model which is based on the projection of the velocities onto a set of admissible velocities. Then, we describe...

Numerical solution of a 1-d elastohydrodynamic problem in magnetic storage devices

Iñigo Arregui, José Jesús Cendán, Carlos Parés, Carlos Vázquez (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we present new numerical methods to simulate the mechanics of head-tape magnetic storage devices. The elastohydrodynamic problem is formulated in terms of a coupled system which is governed by a nonlinear compressible Reynolds equation for the air pressure over the head, and a rod model for the tape displacement. A fixed point algorithm between the solutions of the elastic and hydrodynamic problems is proposed. For the nonlinear Reynolds equation, a characteristics method and a...

Currently displaying 1 – 4 of 4

Page 1