Previous Page 3

Displaying 41 – 47 of 47

Showing per page

Mortar finite element discretization of a model coupling Darcy and Stokes equations

Christine Bernardi, Tomás Chacón Rebollo, Frédéric Hecht, Zoubida Mghazli (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

As a first draft of a model for a river flowing on a homogeneous porous ground, we consider a system where the Darcy and Stokes equations are coupled via appropriate matching conditions on the interface. We propose a discretization of this problem which combines the mortar method with standard finite elements, in order to handle separately the flow inside and outside the porous medium. We prove a priori and a posteriori error estimates for the resulting discrete problem. Some numerical experiments...

Multimodels for incompressible flows : iterative solutions for the Navier-Stokes / Oseen coupling

L. Fatone, P. Gervasio, A. Quarteroni (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In a recent paper [4] we have proposed and analysed a suitable mathematical model which describes the coupling of the Navier-Stokes with the Oseen equations. In this paper we propose a numerical solution of the coupled problem by subdomain splitting. After a preliminary analysis, we prove a convergence result for an iterative algorithm that alternates the solution of the Navier-Stokes problem to the one of the Oseen problem.

Multimodels for incompressible flows: iterative solutions for the Navier-Stokes/Oseen coupling

L. Fatone, P. Gervasio, A. Quarteroni (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In a recent paper [4] we have proposed and analysed a suitable mathematical model which describes the coupling of the Navier-Stokes with the Oseen equations. In this paper we propose a numerical solution of the coupled problem by subdomain splitting. After a preliminary analysis, we prove a convergence result for an iterative algorithm that alternates the solution of the Navier-Stokes problem to the one of the Oseen problem.

Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem

Aihui Zhou (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, a multi-parameter error resolution technique is applied into a mixed finite element method for the Stokes problem. By using this technique and establishing a multi-parameter asymptotic error expansion for the mixed finite element method, an approximation of higher accuracy is obtained by multi-processor computers in parallel.

Currently displaying 41 – 47 of 47

Previous Page 3