Ueber den Einfluss, welchen auf die Bewegung eines Pendels mit einem kugelförmigen Hohlraume eine in ihm enthaltene reibende Flüssigkeit ausübt.
The Navier–Stokes equations are approximated by means of a fractional step, Chorin–Temam projection method; the time derivative is approximated by a three-level backward finite difference, whereas the approximation in space is performed by a Galerkin technique. It is shown that the proposed scheme yields an error of for the velocity in the norm of l2(L2(Ω)d), where l ≥ 1 is the polynomial degree of the velocity approximation. It is also shown that the splitting error of projection schemes based...
The reliable and effective assimilation of measurements and numerical simulations in engineering applications involving computational fluid dynamics is an emerging problem as soon as new devices provide more data. In this paper we are mainly driven by hemodynamics applications, a field where the progressive increment of measures and numerical tools makes this problem particularly up-to-date. We adopt a Bayesian approach to the inclusion of noisy data in the incompressible steady Navier-Stokes equations...
On prouve l’unicité des solutions du système de Navier-Stokes incompressible dans , où est un domaine lipschitzien borné de ().
The main result of this paper is the proof of uniqueness for mild solutions of the Navier-Stokes equations in L3(R3). This result is extended as well to some Morrey-Campanato spaces.
We consider a family of quadrilateral or hexahedral mixed hp-finite elements for an incompressible flow problem with Qr-elements for the velocity and discontinuous -elements for the pressure where the order r can vary from element to element between 2 and an arbitrary bound. For multilevel adaptive grids with hanging nodes and a sufficiently small mesh size, we prove the inf-sup condition uniformly with respect to the mesh size and the polynomial degree.
Consider the Navier-Stokes equation with the initial data . Let and be two weak solutions with the same initial value . If satisfies the usual energy inequality and if where is the multiplier space, then we have .
We prove a uniqueness result of weak solutions to the Cauchy problem of a Keller-Segel-Navier-Stokes system with a logistic term.
Existence of solutions to many kinds of PDEs can be proved by using a fixed point argument or an iterative argument in some Banach space. This usually yields uniqueness in the same Banach space where the fixed point is performed. We give here two methods to prove uniqueness in a more natural class. The first one is based on proving some estimates in a less regular space. The second one is based on a duality argument. In this paper, we present some results obtained in collaboration with Pierre-Louis...