Displaying 41 – 60 of 64

Showing per page

The topological asymptotic expansion for the Quasi-Stokes problem

Maatoug Hassine, Mohamed Masmoudi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we propose a topological sensitivity analysis for the Quasi-Stokes equations. It consists in an asymptotic expansion of a cost function with respect to the creation of a small hole in the domain. The leading term of this expansion is related to the principal part of the operator. The theoretical part of this work is discussed in both two and three dimensional cases. In the numerical part, we use this approach to optimize the locations of a fixed number of air injectors in an eutrophized...

The topological asymptotic for the Navier-Stokes equations

Samuel Amstutz (2005)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of the topological asymptotic analysis is to provide an asymptotic expansion of a shape functional with respect to the size of a small inclusion inserted inside the domain. The main field of application is shape optimization. This paper addresses the case of the steady-state Navier-Stokes equations for an incompressible fluid and a no-slip condition prescribed on the boundary of an arbitrary shaped obstacle. The two and three dimensional cases are treated for several examples of cost functional...

The topological asymptotic for the Navier-Stokes equations

Samuel Amstutz (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of the topological asymptotic analysis is to provide an asymptotic expansion of a shape functional with respect to the size of a small inclusion inserted inside the domain. The main field of application is shape optimization. This paper addresses the case of the steady-state Navier-Stokes equations for an incompressible fluid and a no-slip condition prescribed on the boundary of an arbitrary shaped obstacle. The two and three dimensional cases are treated for several examples of cost functional...

The well-posedness of a swimming model in the 3-D incompressible fluid governed by the nonstationary Stokes equation

Alexander Khapalov (2013)

International Journal of Applied Mathematics and Computer Science

We introduce and investigate the well-posedness of a model describing the self-propelled motion of a small abstract swimmer in the 3-D incompressible fluid governed by the nonstationary Stokes equation, typically associated with low Reynolds numbers. It is assumed that the swimmer's body consists of finitely many subsequently connected parts, identified with the fluid they occupy, linked by rotational and elastic Hooke forces. Models like this are of interest in biological and engineering applications...

Currently displaying 41 – 60 of 64