Displaying 41 – 60 of 63

Showing per page

The topological asymptotic for the Navier-Stokes equations

Samuel Amstutz (2005)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of the topological asymptotic analysis is to provide an asymptotic expansion of a shape functional with respect to the size of a small inclusion inserted inside the domain. The main field of application is shape optimization. This paper addresses the case of the steady-state Navier-Stokes equations for an incompressible fluid and a no-slip condition prescribed on the boundary of an arbitrary shaped obstacle. The two and three dimensional cases are treated for several examples of cost functional...

The topological asymptotic for the Navier-Stokes equations

Samuel Amstutz (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of the topological asymptotic analysis is to provide an asymptotic expansion of a shape functional with respect to the size of a small inclusion inserted inside the domain. The main field of application is shape optimization. This paper addresses the case of the steady-state Navier-Stokes equations for an incompressible fluid and a no-slip condition prescribed on the boundary of an arbitrary shaped obstacle. The two and three dimensional cases are treated for several examples of cost functional...

The well-posedness of a swimming model in the 3-D incompressible fluid governed by the nonstationary Stokes equation

Alexander Khapalov (2013)

International Journal of Applied Mathematics and Computer Science

We introduce and investigate the well-posedness of a model describing the self-propelled motion of a small abstract swimmer in the 3-D incompressible fluid governed by the nonstationary Stokes equation, typically associated with low Reynolds numbers. It is assumed that the swimmer's body consists of finitely many subsequently connected parts, identified with the fluid they occupy, linked by rotational and elastic Hooke forces. Models like this are of interest in biological and engineering applications...

Two-grid finite-element schemes for the transient Navier-Stokes problem

Vivette Girault, Jacques-Louis Lions (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We semi-discretize in space a time-dependent Navier-Stokes system on a three-dimensional polyhedron by finite-elements schemes defined on two grids. In the first step, the fully non-linear problem is semi-discretized on a coarse grid, with mesh-size H . In the second step, the problem is linearized by substituting into the non-linear term, the velocity 𝐮 H computed at step one, and the linearized problem is semi-discretized on a fine grid with mesh-size h . This approach is motivated by the fact that,...

Currently displaying 41 – 60 of 63