Displaying 61 – 80 of 108

Showing per page

On the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations in smooth domains. The regularity problem

Hugo Beirão da Veiga (2009)

Journal of the European Mathematical Society

We establish regularity results up to the boundary for solutions to generalized Stokes and Navier–Stokes systems of equations in the stationary and evolutive cases. Generalized here means the presence of a shear dependent viscosity. We treat the case p 2 . Actually, we are interested in proving regularity results in L q ( Ω ) spaces for all the second order derivatives of the velocity and all the first order derivatives of the pressure. The main aim of the present paper is to extend our previous scheme, introduced...

On the modeling of the transport of particles in turbulent flows

Thierry Goudon, Frédéric Poupaud (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.

On the modeling of the transport of particles in turbulent flows

Thierry Goudon, Frédéric Poupaud (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.

On the regularity of stochastic currents, fractional brownian motion and applications to a turbulence model

Franco Flandoli, Massimiliano Gubinelli, Francesco Russo (2009)

Annales de l'I.H.P. Probabilités et statistiques

We study the pathwise regularity of the map φ↦I(φ)=∫0T〈φ(Xt), dXt〉, where φ is a vector function on ℝd belonging to some Banach space V, X is a stochastic process and the integral is some version of a stochastic integral defined via regularization. A continuous version of this map, seen as a random element of the topological dual of V will be called stochastic current. We give sufficient conditions for the current to live in some Sobolev space of distributions and we provide elements to conjecture...

Probabilistic models of vortex filaments

Franco Flandoli, Ida Minelli (2001)

Czechoslovak Mathematical Journal

A model of vortex filaments based on stochastic processes is presented. In contrast to previous models based on semimartingales, here processes with fractal properties between 1 / 2 and 1 are used, which include fractional Brownian motion and similar non-Gaussian examples. Stochastic integration for these processes is employed to give a meaning to the kinetic energy.

RBF Based Meshless Method for Large Scale Shallow Water Simulations: Experimental Validation

Y. Alhuri, A. Naji, D. Ouazar, A. Taik (2010)

Mathematical Modelling of Natural Phenomena

2D shallow water equations with depth-averaged k−ε model is considered. A meshless method based on multiquadric radial basis functions is described. This methods is based on the collocation formulation and does not require the generation of a grid and any integral evaluation. The application of this method to a flow in horizontal channel, taken as an experimental device, is presented. The results of computations are compared with experimental data...

Recent developments on wall-bounded turbulence.

Javier Jiménez (2007)

RACSAM

The study of turbulence near walls has experienced a renaissance in the last decade, in part because of the availability of high-quality numerical simulations. The viscous and buffer layers over smooth walls are now fairly well understood. They are essentially independent of the outer flow, and there is a family of numerically-exact nonlinear structures that predict well many of the best-known characteristics of the wall layer, such as the intensity and the spectra of the velocity fluctuations,...

Regularity and uniqueness for the stationary large eddy simulation model

Agnieszka Świerczewska (2006)

Applications of Mathematics

In the note we are concerned with higher regularity and uniqueness of solutions to the stationary problem arising from the large eddy simulation of turbulent flows. The system of equations contains a nonlocal nonlinear term, which prevents straightforward application of a difference quotients method. The existence of weak solutions was shown in A. Świerczewska: Large eddy simulation. Existence of stationary solutions to the dynamical model, ZAMM, Z. Angew. Math. Mech. 85 (2005), 593–604 and P....

Remark on regularity of weak solutions to the Navier-Stokes equations

Zdeněk Skalák, Petr Kučera (2001)

Commentationes Mathematicae Universitatis Carolinae

Some results on regularity of weak solutions to the Navier-Stokes equations published recently in [3] follow easily from a classical theorem on compact operators. Further, weak solutions of the Navier-Stokes equations in the space L 2 ( 0 , T , W 1 , 3 ( 𝛺 ) 3 ) are regular.

Simulations of gravity wave induced turbulence using 512 PE Cray T3E

Joseph Prusa, Piotr Smolarkiewicz, Andrzej Wyszogrodzki (2001)

International Journal of Applied Mathematics and Computer Science

A 3D nonhydrostatic, Navier-Stokes solver has been employed to simulate gravity wave induced turbulence at mesopause altitudes. This paper extends our earlier 2D study reported in the literature to three spatial dimensions while maintaining fine resolution required to capture essential physics of the wave breaking. The calculations were performed on the 512 processor Cray T3E machine at the National Energy Research Scientific Computing Center (NERSC) in Berkeley. The physical results of this study...

Currently displaying 61 – 80 of 108