On the breaking of mirror symmetry in homogeneous isotropic turbulence-helicity effect.
We establish regularity results up to the boundary for solutions to generalized Stokes and Navier–Stokes systems of equations in the stationary and evolutive cases. Generalized here means the presence of a shear dependent viscosity. We treat the case . Actually, we are interested in proving regularity results in spaces for all the second order derivatives of the velocity and all the first order derivatives of the pressure. The main aim of the present paper is to extend our previous scheme, introduced...
We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.
We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.
We study the pathwise regularity of the map φ↦I(φ)=∫0T〈φ(Xt), dXt〉, where φ is a vector function on ℝd belonging to some Banach space V, X is a stochastic process and the integral is some version of a stochastic integral defined via regularization. A continuous version of this map, seen as a random element of the topological dual of V will be called stochastic current. We give sufficient conditions for the current to live in some Sobolev space of distributions and we provide elements to conjecture...
A model of vortex filaments based on stochastic processes is presented. In contrast to previous models based on semimartingales, here processes with fractal properties between and are used, which include fractional Brownian motion and similar non-Gaussian examples. Stochastic integration for these processes is employed to give a meaning to the kinetic energy.
2D shallow water equations with depth-averaged k−ε model is considered. A meshless method based on multiquadric radial basis functions is described. This methods is based on the collocation formulation and does not require the generation of a grid and any integral evaluation. The application of this method to a flow in horizontal channel, taken as an experimental device, is presented. The results of computations are compared with experimental data...
The study of turbulence near walls has experienced a renaissance in the last decade, in part because of the availability of high-quality numerical simulations. The viscous and buffer layers over smooth walls are now fairly well understood. They are essentially independent of the outer flow, and there is a family of numerically-exact nonlinear structures that predict well many of the best-known characteristics of the wall layer, such as the intensity and the spectra of the velocity fluctuations,...
In the note we are concerned with higher regularity and uniqueness of solutions to the stationary problem arising from the large eddy simulation of turbulent flows. The system of equations contains a nonlocal nonlinear term, which prevents straightforward application of a difference quotients method. The existence of weak solutions was shown in A. Świerczewska: Large eddy simulation. Existence of stationary solutions to the dynamical model, ZAMM, Z. Angew. Math. Mech. 85 (2005), 593–604 and P....
Some results on regularity of weak solutions to the Navier-Stokes equations published recently in [3] follow easily from a classical theorem on compact operators. Further, weak solutions of the Navier-Stokes equations in the space are regular.
A 3D nonhydrostatic, Navier-Stokes solver has been employed to simulate gravity wave induced turbulence at mesopause altitudes. This paper extends our earlier 2D study reported in the literature to three spatial dimensions while maintaining fine resolution required to capture essential physics of the wave breaking. The calculations were performed on the 512 processor Cray T3E machine at the National Energy Research Scientific Computing Center (NERSC) in Berkeley. The physical results of this study...