Displaying 21 – 40 of 102

Showing per page

Accurate numerical discretizations of non-conservative hyperbolic systems

Ulrik Skre Fjordholm, Siddhartha Mishra (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We present an alternative framework for designing efficient numerical schemes for non-conservative hyperbolic systems. This approach is based on the design of entropy conservative discretizations and suitable numerical diffusion operators that mimic the effect of underlying viscous mechanisms. This approach is illustrated by considering two model non-conservative systems: Lagrangian gas dynamics in non-conservative form and a form of isothermal Euler equations. Numerical experiments demonstrating...

An entropy-correction free solver for non-homogeneous shallow water equations

Tomás Chacón Rebollo, Antonio Domínguez Delgado, Enrique D. Fernández Nieto (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work we introduce an accurate solver for the Shallow Water Equations with source terms. This scheme does not need any kind of entropy correction to avoid instabilities near critical points. The scheme also solves the non-homogeneous case, in such a way that all equilibria are computed at least with second order accuracy. We perform several tests for relevant flows showing the performance of our scheme.

An entropy-correction free solver for non-homogeneous shallow water equations

Tomás Chacón Rebollo, Antonio Domínguez Delgado, Enrique D. Fernández Nieto (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we introduce an accurate solver for the Shallow Water Equations with source terms. This scheme does not need any kind of entropy correction to avoid instabilities near critical points. The scheme also solves the non-homogeneous case, in such a way that all equilibria are computed at least with second order accuracy. We perform several tests for relevant flows showing the performance of our scheme.

Analysis of lumped parameter models for blood flow simulations and their relation with 1D models

Vuk Milišić, Alfio Quarteroni (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper provides new results of consistence and convergence of the lumped parameters (ODE models) toward one-dimensional (hyperbolic or parabolic) models for blood flow. Indeed, lumped parameter models (exploiting the electric circuit analogy for the circulatory system) are shown to discretize continuous 1D models at first order in space. We derive the complete set of equations useful for the blood flow networks, new schemes for electric circuit analogy, the stability criteria that guarantee...

Analysis of lumped parameter models for blood flow simulations and their relation with 1D models

Vuk Milišić, Alfio Quarteroni (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper provides new results of consistence and convergence of the lumped parameters (ODE models) toward one-dimensional (hyperbolic or parabolic) models for blood flow. Indeed, lumped parameter models (exploiting the electric circuit analogy for the circulatory system) are shown to discretize continuous 1D models at first order in space. We derive the complete set of equations useful for the blood flow networks, new schemes for electric circuit analogy, the stability criteria that...

Conservative numerical methods for a two-temperature resistive MHD model with self-generated magnetic field term

Marc Wolff, Stéphane Jaouen, Lise-Marie Imbert-Gérard (2011)

ESAIM: Proceedings

We propose numerical methods on Cartesian meshes for solving the 2-D axisymmetric two-temperature resistivive magnetohydrodynamics equations with self-generated magnetic field and Braginskii’s [1] closures. These rely on a splitting of the complete system in several subsystems according to the nature of the underlying mathematical operator. The hyperbolic part is solved using conservative high-order dimensionally split Lagrange-remap schemes whereas...

Constraint preserving schemes using potential-based fluxes. III. Genuinely multi-dimensional schemes for MHD equations∗∗∗

Siddhartha Mishra, Eitan Tadmor (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We design efficient numerical schemes for approximating the MHD equations in multi-dimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multi-dimensional (GMD) framework of [S. Mishra and E. Tadmor, Commun. Comput. Phys. 9 (2010) 688–710; S. Mishra and E. Tadmor, SIAM J. Numer. Anal. 49 (2011) 1023–1045]. The schemes are formulated in terms of vertex-centered potentials....

Constraint preserving schemes using potential-based fluxes. III. Genuinely multi-dimensional schemes for MHD equations∗∗∗

Siddhartha Mishra, Eitan Tadmor (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We design efficient numerical schemes for approximating the MHD equations in multi-dimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multi-dimensional (GMD) framework of [S. Mishra and E. Tadmor, Commun. Comput. Phys. 9 (2010) 688–710; S. Mishra and E. Tadmor, SIAM J. Numer. Anal. 49 (2011) 1023–1045]. The schemes are formulated in terms of vertex-centered potentials....

Contaminant transport with adsorption in dual-well flow

Jozef Kačur, Roger Van Keer (2003)

Applications of Mathematics

Numerical approximation schemes are discussed for the solution of contaminant transport with adsorption in dual-well flow. The method is based on time stepping and operator splitting for the transport with adsorption and diffusion. The nonlinear transport is solved by Godunov’s method. The nonlinear diffusion is solved by a finite volume method and by Newton’s type of linearization. The efficiency of the method is discussed.

Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients

Kenneth Hvistendahl Karlsen, Nils Henrik Risebro (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a “rough” coefficient function k ( x ) . We show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, k ' is in B V , thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion equations...

Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients

Kenneth Hvistendahl Karlsen, Nils Henrik Risebro (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a "rough"coefficient function k(x). We show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, k' is in BV, thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion...

Currently displaying 21 – 40 of 102