Limit behavior of an oscillating thin layer.
Preconditioners for hyperbolic systems are numerical artifacts to accelerate the convergence to a steady state. In addition, the preconditioner should also be included in the artificial viscosity or upwinding terms to improve the accuracy of the steady state solution. For time dependent problems we use a dual time stepping approach. The preconditioner affects the convergence rate and the accuracy of the subiterations within each physical time step. We consider two types of local preconditioners:...
Preconditioners for hyperbolic systems are numerical artifacts to accelerate the convergence to a steady state. In addition, the preconditioner should also be included in the artificial viscosity or upwinding terms to improve the accuracy of the steady state solution. For time dependent problems we use a dual time stepping approach. The preconditioner affects the convergence rate and the accuracy of the subiterations within each physical time step. We consider two types of local preconditioners: Jacobi...
Lower and upper bounds for the Rayleigh conductivity of a perforation in a thick plate are usually derived from intuitive approximations and by physical reasoning. This paper addresses a mathematical justification of these approaches. As a byproduct of the rigorous handling of these issues, some improvements to previous bounds for axisymmetric holes are given as well as new estimates for tilted perforations. The main techniques are a proper use of the Dirichlet and Kelvin variational principlesin...
In this note, we give an overview of the authors’ paper [6] which deals with asymptotic consistency of a class of linearly implicit schemes for the compressible Euler equations. This class is based on a linearization of the nonlinear fluxes at a reference state and includes the scheme of Feistauer and Kučera [3] as well as the class of RS-IMEX schemes [8,5,1] as special cases. We prove that the linearization gives an asymptotically consistent solution in the low-Mach limit under the assumption of...
FreeFem++ [11] is a software for the numerical solution of partial differential equations. It is based on finite element method. The FreeFem++ platform aims at facilitating teaching and basic research through prototyping. For the moment this platform is restricted to the numerical simulations of problems which admit a variational formulation. Our goal in this work is to evaluate the FreeFem++ tool on basic magnetic equations arising in Fusion Plasma...
This paper presents a model based on spectral hyperviscosity for the simulation of 3D turbulent incompressible flows. One particularity of this model is that the hyperviscosity is active only at the short velocity scales, a feature which is reminiscent of Large Eddy Simulation models. We propose a Fourier–Galerkin approximation of the perturbed Navier–Stokes equations and we show that, as the cutoff wavenumber goes to infinity, the solution of the model converges (up to subsequences) to a weak solution...
This paper presents a model based on spectral hyperviscosity for the simulation of 3D turbulent incompressible flows. One particularity of this model is that the hyperviscosity is active only at the short velocity scales, a feature which is reminiscent of Large Eddy Simulation models. We propose a Fourier–Galerkin approximation of the perturbed Navier–Stokes equations and we show that, as the cutoff wavenumber goes to infinity, the solution of the model converges (up to subsequences) to a weak...
Models of two phase flows in porous media, used in petroleum engineering, lead to a system of two coupled equations with elliptic and parabolic degenerate terms, and two unknowns, the saturation and the pressure. For the purpose of their approximation, a coupled scheme, consisting in a finite volume method together with a phase-by-phase upstream weighting scheme, is used in the industrial setting. This paper presents a mathematical analysis of this coupled scheme, first showing that it satisfies...