Page 1 Next

Displaying 1 – 20 of 25

Showing per page

High order finite volume schemes for numerical solution of 2D and 3D transonic flows

Jiří Fürst, Karel Kozel, Petr Furmánek (2009)

Kybernetika

The aim of this article is a qualitative analysis of two modern finite volume (FVM) schemes. First one is the so called Modified Causon’s scheme, which is based on the classical MacCormack FVM scheme in total variation diminishing (TVD) form, but is simplified in such a way that the demands on computational power are much smaller without loss of accuracy. Second one is implicit WLSQR (Weighted Least Square Reconstruction) scheme combined with various types of numerical fluxes (AUSMPW+ and HLLC)....

Higher-order phase transitions with line-tension effect

Bernardo Galvão-Sousa (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The behavior of energy minimizers at the boundary of the domain is of great importance in the Van de Waals-Cahn-Hilliard theory for fluid-fluid phase transitions, since it describes the effect of the container walls on the configuration of the liquid. This problem, also known as the liquid-drop problem, was studied by Modica in [Ann. Inst. Henri Poincaré, Anal. non linéaire 4 (1987) 487–512], and in a different form by Alberti et al. in [Arch. Rational Mech. Anal.u is a scalar density function and...

Higher-order phase transitions with line-tension effect

Bernardo Galvão-Sousa (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The behavior of energy minimizers at the boundary of the domain is of great importance in the Van de Waals-Cahn-Hilliard theory for fluid-fluid phase transitions, since it describes the effect of the container walls on the configuration of the liquid. This problem, also known as the liquid-drop problem, was studied by Modica in [Ann. Inst. Henri Poincaré, Anal. non linéaire4 (1987) 487–512], and in a different form by Alberti et al. in [Arch. Rational Mech. Anal.144 (1998) 1–46] for a first-order...

Homogenization and diffusion asymptotics of the linear Boltzmann equation

Thierry Goudon, Antoine Mellet (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the diffusion limit for general conservative Boltzmann equations with oscillating coefficients. Oscillations have a frequency of the same order as the inverse of the mean free path, and the coefficients may depend on both slow and fast variables. Passing to the limit, we are led to an effective drift-diffusion equation. We also describe the diffusive behaviour when the equilibrium function has a non-vanishing flux.

Homogenization and Diffusion Asymptotics of the Linear Boltzmann Equation

Thierry Goudon, Antoine Mellet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the diffusion limit for general conservative Boltzmann equations with oscillating coefficients. Oscillations have a frequency of the same order as the inverse of the mean free path, and the coefficients may depend on both slow and fast variables. Passing to the limit, we are led to an effective drift-diffusion equation. We also describe the diffusive behaviour when the equilibrium function has a non-vanishing flux.

Homogenization in perforated domains with rapidly pulsing perforations

Doina Cioranescu, Andrey L. Piatnitski (2003)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of this paper is to study a class of domains whose geometry strongly depends on time namely. More precisely, we consider parabolic equations in perforated domains with rapidly pulsing (in time) periodic perforations, with a homogeneous Neumann condition on the boundary of the holes. We study the asymptotic behavior of the solutions as the period ε of the holes goes to zero. Since standard conservation laws do not hold in this model, a first difficulty is to get a priori estimates of the...

Homogenization in perforated domains with rapidly pulsing perforations

Doina Cioranescu, Andrey L. Piatnitski (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of this paper is to study a class of domains whose geometry strongly depends on time namely. More precisely, we consider parabolic equations in perforated domains with rapidly pulsing (in time) periodic perforations, with a homogeneous Neumann condition on the boundary of the holes. We study the asymptotic behavior of the solutions as the period ε of the holes goes to zero. Since standard conservation laws do not hold in this model, a first difficulty is to get a priori estimates...

Homogenization of the compressible Navier–Stokes equations in a porous medium

Nader Masmoudi (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ε ) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.

Homogenization of the compressible Navier–Stokes equations in a porous medium

Nader Masmoudi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ε) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.

Homogenized double porosity models for poro-elastic media with interfacial flow barrier

Abdelhamid Ainouz (2011)

Mathematica Bohemica

In the paper a Barenblatt-Biot consolidation model for flows in periodic porous elastic media is derived by means of the two-scale convergence technique. Starting with the fluid flow of a slightly compressible viscous fluid through a two-component poro-elastic medium separated by a periodic interfacial barrier, described by the Biot model of consolidation with the Deresiewicz-Skalak interface boundary condition and assuming that the period is too small compared with the size of the medium, the limiting...

Hybrid central-upwind schemes for numerical resolution of two-phase flows

Steinar Evje, Tore Flåtten (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we present a methodology for constructing accurate and efficient hybrid central-upwind (HCU) type schemes for the numerical resolution of a two-fluid model commonly used by the nuclear and petroleum industry. Particularly, we propose a method which does not make use of any information about the eigenstructure of the jacobian matrix of the model. The two-fluid model possesses a highly nonlinear pressure law. From the mass conservation equations we develop an evolution equation which...

Hybrid central-upwind schemes for numerical resolution of two-phase flows

Steinar Evje, Tore Flåtten (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we present a methodology for constructing accurate and efficient hybrid central-upwind (HCU) type schemes for the numerical resolution of a two-fluid model commonly used by the nuclear and petroleum industry. Particularly, we propose a method which does not make use of any information about the eigenstructure of the Jacobian matrix of the model. The two-fluid model possesses a highly nonlinear pressure law. From the mass conservation equations we develop an evolution equation which...

Currently displaying 1 – 20 of 25

Page 1 Next