Displaying 461 – 480 of 797

Showing per page

New wall laws for the unsteady incompressible Navier-Stokes equations on rough domains

Gabriel R. Barrenechea, Patrick Le Tallec, Frédéric Valentin (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Different effective boundary conditions or wall laws for unsteady incompressible Navier-Stokes equations over rough domains are derived in the laminar setting. First and second order unsteady wall laws are proposed using two scale asymptotic expansion techniques. The roughness elements are supposed to be periodic and the influence of the rough boundary is incorporated through constitutive constants. These constants are obtained by solving steady Stokes problems and so they are calculated only once....

New Wall Laws for the Unsteady Incompressible Navier-Stokes Equations on Rough Domains

Gabriel R. Barrenechea, Patrick Le Tallec, Frédéric Valentin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Different effective boundary conditions or wall laws for unsteady incompressible Navier-Stokes equations over rough domains are derived in the laminar setting. First and second order unsteady wall laws are proposed using two scale asymptotic expansion techniques. The roughness elements are supposed to be periodic and the influence of the rough boundary is incorporated through constitutive constants. These constants are obtained by solving steady Stokes problems and so they are calculated only...

Non-uniqueness of almost unidirectional inviscid compressible flow

Pavel Šolín, Karel Segeth (2004)

Applications of Mathematics

Our aim is to find roots of the non-unique behavior of gases which can be observed in certain axisymmetric nozzle geometries under special flow regimes. For this purpose, we use several versions of the compressible Euler equations. We show that the main reason for the non-uniqueness is hidden in the energy decomposition into its internal and kinetic parts, and their complementary behavior. It turns out that, at least for inviscid compressible flows, a bifurcation can occur only at flow regimes with...

Numerical analysis of coupling for a kinetic equation

Moulay Tidriri (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we introduce a coupled systems of kinetic equations for the linearized Carleman model. We then study the existence theory and the asymptotic behaviour of the resulting coupled problem. In order to solve the coupled problem we propose to use the time marching algorithm. We then develop a convergence theory for the resulting algorithm. Numerical results confirming the theory are then presented.

Numerical analysis of Eulerian multi-fluid models in the context of kinetic formulations for dilute evaporating sprays

Frédérique Laurent (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of this article is the analysis and the development of Eulerian multi-fluid models to describe the evolution of the mass density of evaporating liquid sprays. First, the classical multi-fluid model developed in [Laurent and Massot, Combust. Theor. Model.5 (2001) 537–572] is analyzed in the framework of an unsteady configuration without dynamical nor heating effects, where the evaporation process is isolated, since it is a key issue. The classical multi-fluid method consists then in...

Numerical analysis of the Navier-Stokes equations

Rolf Rannacher (1993)

Applications of Mathematics

This paper discusses some conceptional questions of the numerical simulation of viscous incompressible flow which are related to the presence of boundaries.

Numerical approximation of Knudsen layer for the Euler-Poisson system

Fréderique Charles, Nicolas Vauchelet, Christophe Besse, Thierry Goudon, Ingrid Lacroix–Violet, Jean-Paul Dudon, Laurent Navoret (2011)

ESAIM: Proceedings

In this work, we consider the computation of the boundary conditions for the linearized Euler–Poisson derived from the BGK kinetic model in the small mean free path regime. Boundary layers are generated from the fact that the incoming kinetic flux might be far from the thermodynamical equilibrium. In [2], the authors propose a method to compute numerically the boundary conditions in the hydrodynamic limit relying on an analysis of the boundary layers....

Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations

Noel J. Walkington (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Numerical approximation of the flow of liquid crystals governed by the Ericksen-Leslie equations is considered. Care is taken to develop numerical schemes which inherit the Hamiltonian structure of these equations and associated stability properties. For a large class of material parameters compactness of the discrete solutions is established which guarantees convergence.

Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations*

Noel J. Walkington (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Numerical approximation of the flow of liquid crystals governed by the Ericksen-Leslie equations is considered. Care is taken to develop numerical schemes which inherit the Hamiltonian structure of these equations and associated stability properties. For a large class of material parameters compactness of the discrete solutions is established which guarantees convergence.

Numerical approximation of the inviscid 3D primitive equations in a limited domain

Qingshan Chen, Ming-Cheng Shiue, Roger Temam, Joseph Tribbia (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.

Numerical approximation of the inviscid 3D primitive equations in a limited domain

Qingshan Chen, Ming-Cheng Shiue, Roger Temam, Joseph Tribbia (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.

Currently displaying 461 – 480 of 797