On the Lauwerier formulation of the temperature field problem in oil strata.
In this paper we present an analysis of the partial differential equations that describe the Chemical Vapor Infiltration (CVI) processes. The mathematical model requires at least two partial differential equations, one describing the gas phase and one corresponding to the solid phase. A key difficulty in the process is the long processing times that are typically required. We address here the issue of optimization and show that we can choose appropriate pressure and temperature to minimize these...
Si considera l'insorgere della convezione naturale in un mezzo poroso (Horton-Rogers-Lapwood problem), assumendo che la viscosità del fluido dipenda dalla temperatura. Adoperando il metodo diretto di Liapunov, si effettua l'analisi della stabilitá non lineare della soluzione di conduzione per i modelli di Darcy e di Forchheimer.
In this paper we discuss inverse problems in infiltration. We propose an efficient method for identification of model parameters, e.g., soil parameters for unsaturated porous media. Our concept is strongly based on the finite speed of propagation of the wetness front during the infiltration into a dry region. We determine the unknown parameters from the corresponding ODE system arising from the original porous media equation. We use the automatic differentiation implemented in the ODE solver LSODA....
We study the numerical aspect of the optimal control of problems governed by a linear elliptic partial differential equation (PDE). We consider here the gas flow in porous media. The observed variable is the flow field we want to maximize in a given part of the domain or its boundary. The control variable is the pressure at one part of the boundary or the discharges of some wells located in the interior of the domain. The objective functional is a balance between the norm of the flux in the observation...
In this paper we construct a model to describe some aspects of the deformation of the central region of the human lung considered as a continuous elastically deformable medium. To achieve this purpose, we study the interaction between the pipes composing the tree and the fluid that goes through it. We use a stationary model to determine the deformed radius of each branch. Then, we solve a constrained minimization problem, so as to minimize the viscous (dissipated) energy in the tree. The key...
We give a new proof of the Lipschitz continuity with respect to t of the pressure in a one dimensional porous medium flow. As is shown by the Barenblatt solution, this is the optimal t-regularity for the pressure. Our proof is based on the existence and properties of a certain selfsimilar solution.